Skip to main content

Advertisement

Log in

FGF21 Protects Dopaminergic Neurons in Parkinson’s Disease Models Via Repression of Neuroinflammation

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Fibroblast growth factor21 (FGF21), a member of the FGF family, plays multiple biological functions including anti-inflammation, anti-oxidative stress, and anti-apoptosis. It has been shown that FGF21 protects cells from acute injury in several kinds of cells such as islet β-cells, endothelial cells, cardiomyocytes, and dopaminergic neurons. However, whether FGF21 plays neuroprotective roles against Parkinsonian syndrome in vivo has not been elucidated. Our results showed that FGF21 markedly improves cell survival in MPP+-treated SH-SY5Y cells and primary dopaminergic neurons. Furthermore, we treated MPTP-induced Parkinson’s disease (PD) model mice with the recombinant FGF21 via intranasal pathway. The results showed that FGF21 treatment significantly improves behavioral performances and prevents tyrosine hydroxylase (TH) loss in the substantia nigra par compacta (SNpc) and striatum. Mechanistically, FGF21 stimulates the AMPK/PGC-1α axis to promote mitochondrial functions. Moreover, FGF21 attenuates microglia and astrocyte activation induced by MPTP, leading to a low level of inflammation in the brain. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against MPTP-induced PD syndrome in mice, indicating it might be a potent candidate for developing novel drugs to deal with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amiri M, Braidy N, Aminzadeh M (2018) Protective effects of fibroblast growth factor 21 against amyloid-beta1-42-induced toxicity in SH-SY5Y cells. Neurotox Res 34:574–583

    CAS  PubMed  Google Scholar 

  • Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-Wydemans G et al (2014) AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 307:H1120–H1133

    CAS  PubMed  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166

    CAS  PubMed  Google Scholar 

  • Bobela W, Nazeeruddin S, Knott G, Aebischer P, Schneider BL (2017) Modulating the catalytic activity of AMPK has neuroprotective effects against alpha-synuclein toxicity. Mol Neurodegener 12:80

    PubMed  PubMed Central  Google Scholar 

  • Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boshoff EL, Fletcher EJR, Duty S (2018) Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology 137:156–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DY, Lee MK, Hong JT (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol Dis 49:159–168

    CAS  PubMed  Google Scholar 

  • Choi JS, Park C, Jeong JW (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 391:147–151

    CAS  PubMed  Google Scholar 

  • Curry DW, Stutz B, Andrews ZB, Elsworth JD (2018) Targeting AMPK signaling as a Neuroprotective strategy in Parkinson’s disease. J Park Dis 8:161–181

    Google Scholar 

  • Deng-Bryant Y, Readnower R, Leung LY, Tortella F, Shear D (2016) Methods of drug delivery in Neurotrauma. Methods Mol Biol 1462:89–100

    CAS  PubMed  Google Scholar 

  • Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L et al (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11

    CAS  PubMed  Google Scholar 

  • Fan Z, Liang Z, Yang H, Pan Y, Zheng Y et al (2017) Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia. J Neuroinflammation 14:256

    PubMed  PubMed Central  Google Scholar 

  • Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884–890

    Google Scholar 

  • Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241

    CAS  PubMed  Google Scholar 

  • Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    CAS  PubMed  Google Scholar 

  • Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guma M, Wang Y, Viollet B, Liu-Bryan R (2015) AMPK activation by A-769662 controls IL-6 expression in inflammatory arthritis. PLoS One 10:e0140452

    PubMed  PubMed Central  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    CAS  PubMed  Google Scholar 

  • Hsuchou H, Pan W, Kastin AJ (2007) The fasting polypeptide FGF21 can enter brain from blood. Peptides 28:2382–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A et al (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438

    CAS  PubMed  Google Scholar 

  • Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313

    CAS  PubMed  Google Scholar 

  • Liu X, Peng S, Zhao Y, Zhao T, Wang M, Luo L, Yang Y, Sun C (2017) Mol Neurobiol 54:3554–3564

    CAS  PubMed  Google Scholar 

  • Liu X, Zhao Y, Peng S, Zhang S, Wang M et al (2016) BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells. Sci Rep 6:31049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CH, Basil AH, Hang L, Tan R, Goh KL, O’Neill S, Zhang X, Yu F, Lim KL (2017) Genetic or pharmacological activation of the Drosophila PGC-1alpha ortholog spargel rescues the disease phenotypes of genetic models of Parkinson’s disease. Neurobiol Aging 55:33–37

    CAS  PubMed  Google Scholar 

  • Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK, O’Neill SP, Zhang X, Chung J, Lim KL (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32:14311–14317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145 dev156117

    PubMed  Google Scholar 

  • Peixoto CA, Oliveira WH, Araujo S, Nunes AKS (2017) AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 298:31–41

    CAS  PubMed  Google Scholar 

  • Pilon G, Dallaire P, Marette A (2004) Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 279:20767–20774

    CAS  PubMed  Google Scholar 

  • Potthoff MJ (2017) FGF21 and metabolic disease in 2016: a new frontier in FGF21 biology. Nat Rev Endocrinol 13:74–76

    CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    CAS  PubMed  Google Scholar 

  • Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochimi Biophys Acta 1813:1269–1278

    CAS  Google Scholar 

  • Schapira AH, Patel S (2014) Targeting mitochondria for neuroprotection in Parkinson disease. JAMA Neurol 71:537–538

    PubMed  Google Scholar 

  • Sleeman IJ, Boshoff EL, Duty S (2012) Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neuropharmacology 63:1268–1277

    CAS  PubMed  Google Scholar 

  • Sun C, Wang M, Liu X, Luo L, Li K, Zhang S, Wang Y, Yang Y, Ding F, Gu X (2014) PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1alpha. Cell Rep 9:2250–2262

    CAS  PubMed  Google Scholar 

  • Talukdar S, Owen BM, Song P, Hernandez G, Zhang Y, Zhou Y, Scott WT, Paratala B, Turner T, Smith A, Bernardo B, Müller CP, Tang H, Mangelsdorf DJ, Goodwin B, Kliewer SA (2016a) FGF21 regulates sweet and alcohol preference. Cell Metab 23:344–349

    CAS  PubMed  Google Scholar 

  • Talukdar S, Zhou Y, Li D, Rossulek M, Dong J et al (2016b) A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab 23:427–440

    CAS  PubMed  Google Scholar 

  • Wan Z, Root-McCaig J, Castellani L, Kemp BE, Steinberg GR, Wright DC (2014) Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity 22:730–738

    CAS  PubMed  Google Scholar 

  • Woo YC, Xu A, Wang Y, Lam KS (2013) Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol 78:489–496

    CAS  Google Scholar 

  • Yuan YQ, Wang YL, Yuan BS, Yuan X, Hou XO et al (2018) Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson’s disease. Brain Behav Immun 67:77–90

    CAS  PubMed  Google Scholar 

  • Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Y (2015) Fibroblast growth factor 21 analogs for treating metabolic disorders. Front Endocrinol 6:168

    Google Scholar 

  • Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS et al (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701304), the National Natural Science Foundation of China (Nos: 81770841; 81970747), and the Project of “Six Kinds of Talents Summit” of Jiangsu Province (SWYY-051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolin Lian or Cheng Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Ma, J., Mu, D. et al. FGF21 Protects Dopaminergic Neurons in Parkinson’s Disease Models Via Repression of Neuroinflammation. Neurotox Res 37, 616–627 (2020). https://doi.org/10.1007/s12640-019-00151-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00151-6

Keywords

Navigation