Skip to main content
Log in

Repeated Use of Morphine Induces Anxiety by Affecting a Proinflammatory Cytokine Signaling Pathway in the Prefrontal Cortex in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We examined the role of toll-like receptors (TLRs) and proinflammatory cytokine signaling pathways in the prefrontal cortex (PFC) in anxiety-like behaviors after repeated use of morphine. Morphine (10 mg/kg) was used twice daily for 8 days to induce morphine dependence in male Wistar rats. On day 8, opioid dependence was confirmed by measuring naloxone-precipitated withdrawal signs. On days 1 and 8, anxiety-like behaviors were evaluated using a light/dark box test. Expression of TLR1 and 4, proinflammatory cytokines, and some of the downstream signaling molecules was also evaluated in the bilateral PFC at mRNA and protein levels following morphine dependence. The results revealed that morphine caused anxiolytic-like effects on day 1 while induced anxiety following 8 days of repeated injection. On day 8, a significant decrease in TLR1 expression was detected in the PFC in morphine-dependent rats, but TLR4 remained unaffected. Repeated morphine injection significantly increased IL1-β, TNFα, and IL6 expression, but decreased IL1R and TNFR at mRNA and protein levels except for IL6R at the protein level in the PFC. The p38α mitogen-activated protein (MAP) kinase expression significantly increased but the JNK3 expression decreased in the PFC in morphine-dependent rats. Repeated injection of morphine also significantly increased the NF-κB expression in the PFC. Further, significant increases in Let-7c, mir-133b, and mir-365 were detected in the PFC in morphine-dependent rats. We conclude that TLR1 and proinflammatory cytokines signaling pathways in the PFC are associated with the anxiogenic-like effects of morphine following its chronic use in rats via a MAP kinase/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ueda H, Ueda M (2009) Mechanisms underlying morphine analgesic tolerance and dependence. Front Biosci (Landmark Ed) 14:5260–5272. https://doi.org/10.2741/3596

    Article  CAS  Google Scholar 

  2. Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591. https://doi.org/10.1016/j.tips.2009.08.002

    Article  CAS  Google Scholar 

  3. Glover EM, Davis M (2008) Anxiolytic-like effects of morphine and buprenorphine in the rat model of fear-potentiated startle: tolerance, cross-tolerance, and blockade by naloxone. Psychopharmacol 198:167–180. https://doi.org/10.1007/s00213-008-1112-0

    Article  CAS  Google Scholar 

  4. Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S (2015) The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 29:299–309. https://doi.org/10.1111/fcp.12121

    Article  CAS  Google Scholar 

  5. Wilson-Poe AR, Jeong HJ, Vaughan CW (2017) Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance. J Physiol 595:6541–6555. https://doi.org/10.1113/jp274157

    Article  CAS  Google Scholar 

  6. Koller G, Schwarzer A, Halfter K, Soyka M (2019) Pain management in opioid maintenance treatment. Expert Opin Pharmacother 20:1993–2005. https://doi.org/10.1080/14656566.2019.1652270

    Article  CAS  Google Scholar 

  7. Mercadante S, Arcuri E, Santoni A (2019) Opioid-induced tolerance and hyperalgesia. CNS Drugs 33:943–955. https://doi.org/10.1007/s40263-019-00660-0

    Article  CAS  Google Scholar 

  8. Kim J, Ham S, Hong H, Moon C (2016) Im HI Brain reward circuits in morphine addiction. Mol Cells 39:645–53. https://doi.org/10.14348/molcells.2016.0137

    Article  CAS  Google Scholar 

  9. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760–773. https://doi.org/10.1016/s2215-0366(16)00104-8

    Article  Google Scholar 

  10. Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neurosci 7:2321–2335

    Article  CAS  Google Scholar 

  11. Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279

    Article  CAS  Google Scholar 

  12. Ong WY, Stohler CS, Herr DR (2019) Role of the prefrontal cortex in pain processing. Mol Neurobiol 56:1137–1166. https://doi.org/10.1007/s12035-018-1130-9

    Article  CAS  Google Scholar 

  13. Dixon ML, Thiruchselvam R, Todd R, Christoff K (2017) Emotion and the prefrontal cortex: an integrative review. Psychol Bull 143:1033–1081. https://doi.org/10.1037/bul0000096

    Article  Google Scholar 

  14. Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269. https://doi.org/10.1016/j.neuron.2009.12.002

    Article  CAS  Google Scholar 

  15. Lowery-Gionta EG, Crowley NA, Bukalo O, Silverstein S, Holmes A, Kash TL (2018) Chronic stress dysregulates amygdalar output to the prefrontal cortex. Neuropharmacol 139:68–75. https://doi.org/10.1016/j.neuropharm.2018.06.032

    Article  CAS  Google Scholar 

  16. Yang Y, Wang JZ (2017) From structure to behavior in basolateral amygdala-hippocampus circuits. Front Neural Circuits 11:86. https://doi.org/10.3389/fncir.2017.00086

    Article  CAS  Google Scholar 

  17. Zaki Y, Mau W, Cincotta C, Monasterio A, Odom E, Doucette E et al (2022) Hippocampus and amygdala fear memory engrams re-emerge after contextual fear relapse. Neuropsychopharmacol 47:1992–2001. https://doi.org/10.1038/s41386-022-01407-0

    Article  CAS  Google Scholar 

  18. McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79:16–29. https://doi.org/10.1016/j.neuron.2013.06.028

    Article  CAS  Google Scholar 

  19. Mah L, Szabuniewicz C, Fiocco AJ (2016) Can anxiety damage the brain? Curr Opin Psychiatry 29:56–63. https://doi.org/10.1097/yco.0000000000000223

    Article  Google Scholar 

  20. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacol 35:217–238. https://doi.org/10.1038/npp.2009.110

    Article  Google Scholar 

  21. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J (2019) The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20 https://doi.org/10.3390/ijms20174302

  22. Spetea M, Asim MF, Wolber G, Schmidhammer H (2013) The µ opioid receptor and ligands acting at the µ opioid receptor, as therapeutics and potential therapeutics. Curr Pharm Des 19:7415–7434. https://doi.org/10.2174/13816128113199990362

    Article  CAS  Google Scholar 

  23. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286. https://doi.org/10.1016/s0168-0102(00)00226-1

    Article  CAS  Google Scholar 

  24. Eidson LN, Murphy AZ (2019) Inflammatory mediators of opioid tolerance: Implications for dependency and addiction. Peptides 115:51–58. https://doi.org/10.1016/j.peptides.2019.01.003

    Article  CAS  Google Scholar 

  25. Eidson LN, Murphy AZ (2013) Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci 33:15952–15963. https://doi.org/10.1523/jneurosci.1609-13.2013

    Article  CAS  Google Scholar 

  26. Wu R, Li JX (2020) Toll-like receptor 4 signaling and drug addiction. Front Pharmacol 11:603445. https://doi.org/10.3389/fphar.2020.603445

    Article  CAS  Google Scholar 

  27. Jacobsen JH, Watkins LR, Hutchinson MR (2014) Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. Int Rev Neurobiol 118:129–163. https://doi.org/10.1016/b978-0-12-801284-0.00006-3

    Article  Google Scholar 

  28. Zhang Y, Li H, Li Y, Sun X, Zhu M, Hanley G et al (2011) Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice. Neurosci Lett 489:43–47. https://doi.org/10.1016/j.neulet.2010.11.063

    Article  CAS  Google Scholar 

  29. Liu QF, Li L, Guo YQ, Li X, Mou ZD, Wang X et al (2016) Injection of toll-like receptor 4 siRNA into the ventrolateral periaqueductal gray attenuates withdrawal syndrome in morphine-dependent rats. Arch Ital Biol 154:133–42. https://doi.org/10.12871/00039829201644

    Article  CAS  Google Scholar 

  30. Thomas JHL, Lui L, Abell A, Tieu W, Somogyi AA, Bajic JE et al (2022) Toll-like receptors change morphine-induced antinociception, tolerance and dependence: studies using male and female TLR and signalling gene KO mice. Brain Behav Immun 102:71–85. https://doi.org/10.1016/j.bbi.2022.02.001

    Article  CAS  Google Scholar 

  31. Shafie A, Moradi F, Izadpanah E, Mokarizadeh A, Moloudi MR, Nikzaban M et al (2015) Neuroprotection of donepezil against morphine-induced apoptosis is mediated through toll-like receptors. Eur J Pharmacol 764:292–297. https://doi.org/10.1016/j.ejphar.2015.07.027

    Article  CAS  Google Scholar 

  32. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K et al (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 109:6325–6330. https://doi.org/10.1073/pnas.1200130109

    Article  Google Scholar 

  33. Liu DQ, Zhou YQ, Gao F (2019) Targeting cytokines for morphine tolerance: a narrative review. Curr Neuropharmacol 17:366–376. https://doi.org/10.2174/1570159x15666171128144441

    Article  CAS  Google Scholar 

  34. Barbierato M, Zusso M, Skaper SD, Giusti P (2015) MicroRNAs: emerging role in the endogenous μ opioid system. CNS Neurol Disord Drug Targets 14:239–250. https://doi.org/10.2174/1871527314666150116123932

    Article  CAS  Google Scholar 

  35. Huang J, Wang J, Guo Q, Zou W (2019) Emerging roles of microRNAs in morphine tolerance. J Pain Res 12:1139–1147. https://doi.org/10.2147/jpr.s187592

    Article  CAS  Google Scholar 

  36. Sartor GC, St Laurent G 3rd, Wahlestedt C (2012) The emerging role of non-coding RNAs in drug addiction. Front Genet 3:106. https://doi.org/10.3389/fgene.2012.00106

    Article  CAS  Google Scholar 

  37. Zhang TJ, Qiu Y, Hua Z (2019) The emerging perspective of morphine tolerance: microRNAs. Pain Res Manag 2019:9432965. https://doi.org/10.1155/2019/9432965

    Article  Google Scholar 

  38. Toyama K, Kiyosawa N, Watanabe K, Ishizuka H (2017) Identification of circulating miRNAs differentially regulated by opioid treatment. Int J Mol Sci 18 https://doi.org/10.3390/ijms18091991.

  39. He Y, Wang ZJ (2012) Let-7 microRNAs and opioid tolerance. Front Genet 3:110. https://doi.org/10.3389/fgene.2012.00110

    Article  CAS  Google Scholar 

  40. García-Pérez D, López-Bellido R, Hidalgo JM, Rodríguez RE, Laorden ML, Núñez C et al (2015) Morphine regulates argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons. Addict Biol 20:104–119. https://doi.org/10.1111/adb.12083

    Article  CAS  Google Scholar 

  41. Rodríguez RE (2012) Morphine and microRNA activity: is there a relation with addiction? Front Genet 3:223. https://doi.org/10.3389/fgene.2012.00223

    Article  CAS  Google Scholar 

  42. Wang J, Xu W, Zhong T, Song Z, Zou Y, Ding Z et al (2016) miR-365 targets β-arrestin 2 to reverse morphine tolerance in rats. Sci Rep 6:38285. https://doi.org/10.1038/srep38285

    Article  CAS  Google Scholar 

  43. Wu XP, She RX, Yang YP, Xing ZM, Chen HW, Zhang YW (2018) MicroRNA-365 alleviates morphine analgesic tolerance via the inactivation of the ERK/CREB signaling pathway by negatively targeting β-arrestin2. J Biomed Sci 25:10. https://doi.org/10.1186/s12929-018-0405-9

    Article  CAS  Google Scholar 

  44. Yu G, Yan H, Gong ZH (2014) Effects of acute and repeated morphine treatment on κ-opioid receptor protein levels in mesocorticolimbic system. J Recept Signal Transduct Res 34:44–47. https://doi.org/10.3109/10799893.2013.856919

    Article  CAS  Google Scholar 

  45. Ahmadi S, Zobeiri M, Mohammadi Talvar S, Masoudi K, Khanizad A, Fotouhi S et al (2021) Differential expression of H19, BC1, MIAT1, and MALAT1 long non-coding RNAs within key brain reward regions after repeated morphine treatment. Behav Brain Res 414:113478. https://doi.org/10.1016/j.bbr.2021.113478

    Article  CAS  Google Scholar 

  46. Ahmadi S, Khaledi S (2020) Anxiety in rats with bile duct ligation is associated with activation of JNK3 mitogen-activated protein kinase in the hippocampus. Metab Brain Dis 35:579–588. https://doi.org/10.1007/s11011-020-00542-1

    Article  CAS  Google Scholar 

  47. Ramos A (2008) Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 29:493–498. https://doi.org/10.1016/j.tips.2008.07.005

    Article  CAS  Google Scholar 

  48. Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65

    Article  CAS  Google Scholar 

  49. Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32:777–785. https://doi.org/10.1016/0091-3057(89)90033-6

    Article  CAS  Google Scholar 

  50. Ahmadi S, Poureidi M, Rostamzadeh J (2015) Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis 30:1035–1041. https://doi.org/10.1007/s11011-015-9669-x

    Article  CAS  Google Scholar 

  51. Chiu K, Lau WM, Lau HT, So KF, Chang RC (2007) Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp 269 https://doi.org/10.3791/269

  52. Ahmadi S, Karami Z, Mohammadian A, Khosrobakhsh F, Rostamzadeh J (2015) Cholestasis induced antinociception and decreased gene expression of MOR1 in rat brain. Neurosci 284:78–86. https://doi.org/10.1016/j.neuroscience.2014.08.063

    Article  CAS  Google Scholar 

  53. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  55. Liu JG, Anand KJ (2001) Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev 38:1–19. https://doi.org/10.1016/s0165-0173(01)00057-1

    Article  CAS  Google Scholar 

  56. Bali P, Kenny PJ (2019) Transcriptional mechanisms of drug addiction. Dialogues Clin Neurosci 21:379–87. https://doi.org/10.31887/DCNS.2019.21.4/pkenny

    Article  Google Scholar 

  57. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637. https://doi.org/10.1038/nrn3111

    Article  CAS  Google Scholar 

  58. Roeska K, Doods H, Arndt K, Treede RD, Ceci A (2008) Anxiety-like behaviour in rats with mononeuropathy is reduced by the analgesic drugs morphine and gabapentin. Pain 139:349–357. https://doi.org/10.1016/j.pain.2008.05.003

    Article  CAS  Google Scholar 

  59. Shin IC, Kim HC, Swanson J, Hong JT, Oh KW (2003) Anxiolytic effects of acute morphine can be modulated by nitric oxide systems. Pharmacol 68:183–189. https://doi.org/10.1159/000070457

    Article  CAS  Google Scholar 

  60. Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y (2012) Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise. Physiol Behav 105:195–202. https://doi.org/10.1016/j.physbeh.2011.08.010

    Article  CAS  Google Scholar 

  61. Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH (2012) Effect of berberine on depression- and anxiety-like behaviors and activation of the noradrenergic system induced by development of morphine dependence in rats. Korean J Physiol Pharmacol 16:379–386. https://doi.org/10.4196/kjpp.2012.16.6.379

    Article  CAS  Google Scholar 

  62. Motaghinejad M, Fatima S, Banifazl S, Bangash MY, Karimian M (2016) Study of the effects of controlled morphine administration for treatment of anxiety, depression and cognition impairment in morphine-addicted rats. Adv Biomed Res 5:178. https://doi.org/10.4103/2277-9175.188491

    Article  CAS  Google Scholar 

  63. Jarvik LF, Simpson JH, Guthrie D, Liston EH (1981) Morphine, experimental pain, and psychological reactions. Psychopharmacol 75:124–131. https://doi.org/10.1007/bf00432173

    Article  CAS  Google Scholar 

  64. Niu H, Zhang G, Li H, Zhang Q, Li T, Ding S et al (2017) Multi-system state shifts and cognitive deficits induced by chronic morphine during abstinence. Neurosci Lett 640:144–151. https://doi.org/10.1016/j.neulet.2016.10.057

    Article  CAS  Google Scholar 

  65. Wang Y, Zhang H, Cui J, Zhang J, Yin F, Guo H et al (2019) Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal-prefrontal connectivity. Neuropsychopharmacol 44:334–343. https://doi.org/10.1038/s41386-018-0068-y

    Article  CAS  Google Scholar 

  66. Quintero GC (2013) Role of nucleus accumbens glutamatergic plasticity in drug addiction. Neuropsychiatr Dis Treat 9:1499–1512. https://doi.org/10.2147/ndt.s45963

    Article  CAS  Google Scholar 

  67. Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810. https://doi.org/10.1124/pr.110.004135

    Article  CAS  Google Scholar 

  68. Gay NJ, Gangloff M, Weber AN (2006) Toll-like receptors as molecular switches. Nat Rev Immunol 6:693–698. https://doi.org/10.1038/nri1916

    Article  CAS  Google Scholar 

  69. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T et al (2006) Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281:31002–31011. https://doi.org/10.1074/jbc.M602794200

    Article  CAS  Google Scholar 

  70. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N et al (2008) Opioid complications and side effects. Pain Physician 11:S105–S120

    Article  Google Scholar 

  71. Allouche S, Noble F, Marie N (2014) Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 5:280. https://doi.org/10.3389/fphar.2014.00280

    Article  CAS  Google Scholar 

  72. Corder G, Castro DC, Bruchas MR, Scherrer G (2018) Endogenous and exogenous opioids in pain. Annu Rev Neurosci 41:453–473. https://doi.org/10.1146/annurev-neuro-080317-061522

    Article  CAS  Google Scholar 

  73. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430. https://doi.org/10.1146/annurev.pharmtox.40.1.389

    Article  CAS  Google Scholar 

  74. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112. https://doi.org/10.1038/sj.onc.1210392

    Article  CAS  Google Scholar 

  75. Yuill MB, Zee ML, Marcus D, Morgan DJ (2016) Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase. NeuroReport 27:392–396. https://doi.org/10.1097/wnr.0000000000000551

    Article  CAS  Google Scholar 

  76. Marcus DJ, Zee M, Hughes A, Yuill MB, Hohmann AG, Mackie K et al (2015) Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase. Mol Pain 11:34. https://doi.org/10.1186/s12990-015-0031-4

    Article  CAS  Google Scholar 

  77. Chen Y, Sommer C (2009) The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 40:101–107. https://doi.org/10.1007/s12035-009-8074-z

    Article  CAS  Google Scholar 

  78. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX (2006) Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res 1069:235–243. https://doi.org/10.1016/j.brainres.2005.11.066

    Article  CAS  Google Scholar 

  79. Cui Y, Liao XX, Liu W, Guo RX, Wu ZZ, Zhao CM et al (2008) A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22:114–123. https://doi.org/10.1016/j.bbi.2007.07.014

    Article  CAS  Google Scholar 

  80. Hong SI, Nguyen TL, Ma SX, Kim HC, Lee SY, Jang CG (2017) TRPV1 modulates morphine-induced conditioned place preference via p38 MAPK in the nucleus accumbens. Behav Brain Res 334:26–33. https://doi.org/10.1016/j.bbr.2017.07.017

    Article  CAS  Google Scholar 

  81. Zhang X, Cui Y, Jing J, Cui Y, Xin W, Liu X (2011) Involvement of p38/NF-κB signaling pathway in the nucleus accumbens in the rewarding effects of morphine in rats. Behav Brain Res 218:184–189. https://doi.org/10.1016/j.bbr.2010.11.049

    Article  CAS  Google Scholar 

  82. He Y, Yang C, Kirkmire CM, Wang ZJ (2010) Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J Neurosci 30:10251–10258. https://doi.org/10.1523/jneurosci.2419-10.2010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Cognitive Sciences and Technologies Council of Iran (Contract No. D/100/11988).

Funding

This study was funded by the Cognitive Sciences and Technologies Council of Iran (Contract No. D/100/11988).

Author information

Authors and Affiliations

Authors

Contributions

Shamseddin Ahmadi: conceptualization and design of the work, writing—original draft preparation, writing—reviewing and editing, supervision, project administration, and funding acquisition. Mohammad Zobeiri, Shiva Mohammadi Talvar, and Kayvan Masoudi: acquisition, analysis, interpretation of data, and writing—original draft preparation. All authors approved the final version for publication.

Corresponding author

Correspondence to Shamseddin Ahmadi.

Ethics declarations

Ethics Approval

All procedures were done according to the Guide for the Care and Use of Laboratory Animals (2011) prepared by the National Academy of Sciences’ Institute for Laboratory Animal Research. The Research Ethics Committee (REC) at the University of Kurdistan approved the study protocol (IR.UOK.REC.1398.021).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Mohammadi Talvar, S., Masoudi, K. et al. Repeated Use of Morphine Induces Anxiety by Affecting a Proinflammatory Cytokine Signaling Pathway in the Prefrontal Cortex in Rats. Mol Neurobiol 60, 1425–1439 (2023). https://doi.org/10.1007/s12035-022-03144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03144-3

Keywords

Navigation