Skip to main content
Log in

Anxiolytic-like effects of morphine and buprenorphine in the rat model of fear-potentiated startle: tolerance, cross-tolerance, and blockade by naloxone

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Morphine and buprenorphine have analgesic and anxiolytic-like properties. While their analgesic effects have been well characterized, their anxiolytic-like properties have not.

Objectives

Effects of acute morphine and buprenorphine on the expression of acoustic fear-potentiated startle (FPS) and naloxone pretreatment were assessed. Effects of chronic morphine and buprenorphine on tolerance, cross-tolerance, and withdrawal were also examined.

Materials and methods

Fear-conditioned rats were given subcutaneous drug treatment immediately before testing for FPS. Experiment 1, rats were administered morphine (0.03, 0.25, 0.63, 2.5, or 10 mg/kg) or buprenorphine (0.004, 0.0075, 0.015, 0.03, or 0.25 mg/kg). Experiment 2, rats were given saline or naloxone (0.5 mg/kg) and 5min later given saline, morphine (2.5 mg/kg), or buprenorphine (0.03 mg/kg). Experiment 3, rats received once-daily injections of saline, morphine (10 mg/kg), or buprenorphine (0.25 mg/kg) for 7 days. Immediately before testing, saline-treated rats were given saline, morphine (2.5 mg/kg), or buprenorphine (0.03 mg/kg), morphine-treated rats were given morphine (2.5 mg/kg) or buprenorphine (0.03 mg/kg), and buprenorphine-treated rats were given buprenorphine (0.03 mg/kg) or morphine (2.5 mg/kg). Tolerance and cross-tolerance in analgesia were assessed via the tail-flick test, as were naloxone-precipitated withdrawal.

Results

Morphine and buprenorphine had parallel dose–response curves in blocking FPS, with buprenorphine 40 times more potent than morphine. Naloxone reversed these effects. Morphine and buprenorphine showed tolerance and cross-tolerance in their anxiolytic-like and analgesic effects. Chronic buprenorphine produced less withdrawal than chronic morphine.

Conclusions

Cross-tolerance between morphine and buprenorphine suggests a common receptor mediating their anxiolytic-like and analgesic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anseloni VC, Coimbra NC, Morato S, Brandao ML (1999) A comparative study of the effects of morphine in the dorsal periaqueductal gray and nucleus accumbens of rats submitted to the elevated plus-maze test. Exp Brain Res 129:260–268

    Article  PubMed  CAS  Google Scholar 

  • Asakawa A, Inui A, Momose K, Ueno N, Fujino MA, Kasuga M (1998) Endomorphins have orexigenic and anxiolytic activities in mice. Neuroreport 9:2265–2267

    Article  PubMed  CAS  Google Scholar 

  • Bailey KP (2004) Pharmacological treatments for substance use disorders. J Psychosoc Nurs Ment Health Serv 42:14–20

    Google Scholar 

  • Barrett AC, Cook CD, Terner JM, Craft RM, Picker MJ (2001) Importance of sex and relative efficacy at the mu opioid receptor in the development of tolerance and cross-tolerance to the antinociceptive effects of opioids. Psychopharmacology (Berl) 158:154–164

    Article  CAS  Google Scholar 

  • Bartoletti M, Gaiardi M, Gubellini C, Bacchi A, Babbini M (1990) Morphine attenuation of a conditioned emotional response in post-dependent rats. Eur J Pharmacol 185:163–167

    Article  PubMed  CAS  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605

    Article  PubMed  CAS  Google Scholar 

  • Bloms-Funke P, Gillen C, Schuettler AJ, Wnendt S (2000) Agonistic effects of the opioid buprenorphine on the nociceptin/OFQ receptor. Peptides 21:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Bodkin JA, Zornberg GL, Lukas SE, Cole JO (1995) Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 15:49–57

    Article  PubMed  CAS  Google Scholar 

  • Cassella JV, Davis M (1986) The design and calibration of a startle measurement system. Physiol Behav 36:377–383

    Google Scholar 

  • Cowan A (2003) Buprenorphine: new pharmacological aspects. Int J Clin Pract Suppl 3–8:23–24 discussion

    Google Scholar 

  • Cowan A, Lewis JW, Macfarlane IR (1977) Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br J Pharmacol 60:537–545

    PubMed  CAS  Google Scholar 

  • Craft RM, Dykstra LA (1990) Differential cross-tolerance to opioids in squirrel monkeys responding under a shock titration schedule. J Pharmacol Exp Ther 252:945–952

    PubMed  CAS  Google Scholar 

  • Davis M (1979a) Morphine and naloxone: effects on conditioned fear as measured with the potentiated startle paradigm. Eur J Pharmacol 54:341–347

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1979b) Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacology 62:1–7

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Redmond DE, Baraban JM (1979) Noradrenergic agonists and antagonists: effects o conditioned fear as measured by the potentiated startle paradigm. Psychopharmacology 65:111–118

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Mucha RF (2001) Anxiogenic-like effects of opiate withdrawal seen in the fear-potentiated startle test, an interdisciplinary probe for drug-related motivational states. Psychopharmacology (Berl) 155:242–250

    Article  CAS  Google Scholar 

  • Fernandez F, Misilmeri MA, Felger JC, Devine DP (2004) Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology 29:59–71

    Article  PubMed  CAS  Google Scholar 

  • File SE, Rodgers RJ (1979) Partial anxiolytic action of morphine sulphate following microinjection into the central nucleus of the amygdala in rats. Pharmacol Biochem Behav 11:313–318

    Article  PubMed  CAS  Google Scholar 

  • Fox RJ, Sorenson CA (1994) Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges. Brain Res 648:215–221

    Article  PubMed  CAS  Google Scholar 

  • Fudala PJ, Johnson RE, Jaffe JH (1990) Outpatient comparison of buprenorphine and methadone maintenance. II. Effects on cocaine usage, retention time in study and missed clinic visits. NIDA Res Monogr 105:587–588

    PubMed  CAS  Google Scholar 

  • Gellert VF, Holtzman SG (1978) Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J Pharmacol Exp Ther 205:536–546

    PubMed  CAS  Google Scholar 

  • Good AJ, Westbrook RF (1995) Effects of a microinjection of morphine into the amygdala on the acquisition and expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 109:631–641

    Article  PubMed  CAS  Google Scholar 

  • Gowing L, Ali R, White J (2002) Buprenorphine for the management of opioid withdrawal. Cochrane Database Syst Rev CD002025

  • Gringauz M, Rabinowitz R, Stav A, Korczyn AD (2001) Tolerance to the analgesic effect of buprenorphine, butorphanol, nalbuphine, and cyclorphan, and cross-tolerance to morphine. J Anesth 15:204–209

    Article  PubMed  CAS  Google Scholar 

  • Hall SM (1984) The abstinence phobias: links between substance abuse and anxiety. Int J Addict 19:613–631

    PubMed  CAS  Google Scholar 

  • Harris AC, Gewirtz JC (2004) Elevated startle during withdrawal from acute morphine: a model of opiate withdrawal and anxiety. Psychopharmacology (Berl) 171:140–147

    Article  CAS  Google Scholar 

  • Hawkinson JE, Acosta-Burruel M, Espitia SA (2000) Opioid activity profiles indicate similarities between the nociceptin/orphanin FQ and opioid receptors. Eur J Pharmacol 389:107–114

    Article  PubMed  CAS  Google Scholar 

  • Helmstetter FJ, Bellgowan PS (1993) Lesions of the amygdala block conditional hypoalgesia on the tail flick test. Brain Res 612:253–257

    Article  PubMed  CAS  Google Scholar 

  • Helmstetter FJ, Bellgowan PS, Tershner SA (1993) Inhibition of the tail flick reflex following microinjection of morphine into the amygdala. Neuroreport 4:471–474

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock J, Davis M (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 100:11–22

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Kehner GB, Cowan A, Liu-Chen LY (2001) Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther 297:688–695

    PubMed  CAS  Google Scholar 

  • Huyser BA, Parker JC (1999) Negative affect and pain in arthritis. Rheum Dis Clin North Am 25:105–121 vi

    Article  PubMed  CAS  Google Scholar 

  • Ide S, Minami M, Satoh M, Uhl GR, Sora I, Ikeda K (2004) Buprenorphine antinociception is abolished, but naloxone-sensitive reward is retained, in mu-opioid receptor knockout mice. Neuropsychopharmacology 29:1656–1663

    Article  PubMed  CAS  Google Scholar 

  • Jasinski DR, Pevnick JS, Griffith JD (1978) Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Arch Gen Psychiatry 35:501–516

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr., Nothacker HP, Civelli O (1997) Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA 94:14854–14858

    Article  PubMed  CAS  Google Scholar 

  • Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, Kolczewski S, Adam G, Kilpatrick G (2000) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci USA 97:4938–4943

    Article  PubMed  CAS  Google Scholar 

  • Kameyama T, Nagasaka M (1982) The effects of analgesics on quickly-learned conditioned suppression in mice. Neuropharmacology 21:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Cassella JV, Davis M (1988) Anxiolytic effects of buspirone and gepirone in the fear-potentiated startle paradigm. Psychopharmacology 94:8–13

    Article  PubMed  CAS  Google Scholar 

  • Koks S, Soosaar A, Voikar V, Bourin M, Vasar E (1999) BOC-CCK-4, CCK(B)receptor agonist, antagonizes anxiolytic-like action of morphine in elevated plus-maze. Neuropeptides 33:63–69

    Article  PubMed  CAS  Google Scholar 

  • Le Guen S, Gestreau C, Besson JM (2001) Sensitivity to naloxone of the behavioral signs of morphine withdrawal and c-Fos expression in the rat CNS: a quantitative dose–response analysis. J Comp Neurol 433:272–296

    Article  PubMed  Google Scholar 

  • Lewis JW (1985) Buprenorphine. Drug Alcohol Depend 14:363–372

    Article  PubMed  CAS  Google Scholar 

  • Lutfy K, Cowan A (2004) Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharm 2:395–402

    Article  CAS  Google Scholar 

  • Manning BH, Mayer DJ (1995) The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 63:141–152

    Article  PubMed  CAS  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  • McWilliams LA, Cox BJ, Enns MW (2003) Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain 106:127–133

    Article  PubMed  Google Scholar 

  • Meis S, Pape HC (1998) Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to nociceptin/orphanin FQ. J Neurosci 18:8133–8144

    PubMed  CAS  Google Scholar 

  • Motta V, Brandao ML (1993) Aversive and antiaversive effects of morphine in the dorsal periaqueductal gray of rats submitted to the elevated plus-maze test. Pharmacol Biochem Behav 44:119–125

    Article  PubMed  CAS  Google Scholar 

  • Moulin DE, Ling GS, Pasternak GW (1988) Unidirectional analgesic cross-tolerance between morphine and levorphanol in the rat. Pain 33:233–239

    Article  PubMed  CAS  Google Scholar 

  • Privette TH, Terrian DM (1995) Kappa opioid agonists produce anxiolytic-like behavior on the elevated plus-maze. Psychopharmacology (Berl) 118:444–450

    Article  CAS  Google Scholar 

  • Rodgers RJ (1978) Influence of intra-amygdaloid opiate injections on shock thresholds, tail-flick latencies and open field behaviour in rats. Brain Res 153:211–216

    Article  PubMed  CAS  Google Scholar 

  • Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J (2004) Potential anxiolytic and antidepressant-like activities of SNC80, a selective delta-opioid agonist, in behavioral models in rodents. J Pharmacol Sci 95:374–380

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Fan LW, Tien LT, Ma T, Loh HH, Ho IK (2002) The interaction of morphine and gamma-aminobutyric acid (GABA)ergic systems in anxiolytic behavior: using mu-opioid receptor knockout mice. Brain Res Bull 57:689–694

    Article  PubMed  CAS  Google Scholar 

  • Schulteis G, Yackey M, Risbrough V, Koob GF (1998) Anxiogenic-like effects of spontaneous and naloxone-precipitated opiate withdrawal in the elevated plus-maze. Pharmacol Biochem Behav 60:727–731

    Article  PubMed  CAS  Google Scholar 

  • Shin IC, Kim HC, Swanson J, Hong JT, Oh KW (2003) Anxiolytic effects of acute morphine can be modulated by nitric oxide systems. Pharmacology 68:183–189

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Stinus L, Cador M, Zorrilla EP, Koob GF (2005) Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 30:90–98

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2002) Behavioral pharmacology of buprenorphine, with a focus on preclinical models of reward and addiction. Psychopharmacology (Berl) 161:1–16

    Article  CAS  Google Scholar 

  • Uriguen L, Fernandez B, Romero EM, De Pedro N, Delgado MJ, Guaza C, Schmidhammer H, Viveros MP (2002) Effects of 14-methoxymetopon, a potent opioid agonist, on the responses to the tail electric stimulation test and plus-maze activity in male rats: neuroendocrine correlates. Brain Res Bull 57:661–666

    Article  PubMed  CAS  Google Scholar 

  • Walker EA, Young AM (2001) Differential tolerance to antinociceptive effects of mu opioids during repeated treatment with etonitazene, morphine, or buprenorphine in rats. Psychopharmacology (Berl) 154:131–142

    Article  CAS  Google Scholar 

  • Wall PM, Messier C (2000) U-69,593 microinjection in the infralimbic cortex reduces anxiety and enhances spontaneous alternation memory in mice. Brain Res 856:259–280

    Article  PubMed  CAS  Google Scholar 

  • Wichmann J, Adam G, Rover S, Hennig M, Scalone M, Cesura AM, Dautzenberg FM, Jenck F (2000) Synthesis of (1S,3aS)-8-(2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4. 5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur J Med Chem 35:839–851

    Article  PubMed  CAS  Google Scholar 

  • Wnendt S, Kruger T, Janocha E, Hildebrandt D, Englberger W (1999) Agonistic effect of buprenorphine in a nociceptin/OFQ receptor-triggered reporter gene assay. Mol Pharmacol 56:334–338

    PubMed  CAS  Google Scholar 

  • Wright RC, Ingenito AJ (2001) Prevention of isolation-induced hypertension by intrahippocampal administration of a nonpeptide kappa-opioid receptor agonist. Hippocampus 11:445–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stephen Holtzman for his generosity in providing the tail-flick apparatus used in this study. This research was supported by NIMH Grants MH47840 and MH072850 to MD, the Woodruff Foundation, the National Science Foundation Science and Technology Center (the Center for Behavioral Neuroscience of the National Science Foundation under Agreement No. IBN-9876754) and, in part by RROO165 to the Yerkes National Primate Center and an American Psychological Association Mental Health Fellowship granted to Ebony Glover. Portions of this work were presented at the 36th annual meeting of the Society for Neuroscience and submitted by Ebony M. Glover to the Department of Psychology, Emory University, in partial fulfillment of the requirements for the doctoral degree. Animals used in this study were cared for in accordance with guidelines of the Emory University Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebony M. Glover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, E.M., Davis, M. Anxiolytic-like effects of morphine and buprenorphine in the rat model of fear-potentiated startle: tolerance, cross-tolerance, and blockade by naloxone. Psychopharmacology 198, 167–180 (2008). https://doi.org/10.1007/s00213-008-1112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1112-0

Keywords

Navigation