Skip to main content

Advertisement

Log in

COX-2/PGE2 Pathway Inhibits the Ferroptosis Induced by Cerebral Ischemia Reperfusion

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 08 October 2022

This article has been updated

Abstract

Cerebral ischemia reperfusion (I/R) injury easily develops in ischemic stroke, resulting in more serious injury. Ferroptosis is involved in cerebral I/R injury, but the mechanism remains unclear. Prostaglandin E2 (PGE2) is potential to regulate ferroptosis. This study mainly explored the regulation effects of PGE2 on ferroptosis induced by cerebral I/R. We first detected PGE2 levels and ferroptosis status in 11 human brain tissues. Then, we induced a cerebral I/R animal model to examine ferroptosis status in cerebral I/R. We further injected a ferroptosis inhibitor to define the response of the PGE2 pathway to ferroptosis. Finally, we injected PGE2 and pranoprofen to explore the regulation of the cyclooxygenases 2 (COX-2)/PGE2 pathway on ferroptosis in cerebral I/R. We found that PGE2 release was correlated with the levels of reactive oxygen species, malondialdehyde, glutathione peroxidase 4, COX-2, and Spermidine/spermine N1-acetyltransferase 1. Ferroptosis can be induced by cerebral I/R, while inhibition of ferroptosis induced by cerebral I/R can inactivate PGE2 synthases, degrade enzyme, and parts of PGE2 receptors, and reduce cerebral infarct volume. In turn, PGE2 inhibited ferroptosis through the reduction of Fe2+, glutathione oxidation, and lipid peroxidation, while pranoprofen, one of the COX inhibitors, played an opposite role. In conclusion, PGE2 was positively correlated with ferroptosis, inhibition of ferroptosis induced by cerebral I/R can inactivate COX-2/PGE2 pathway, and PGE2 inhibited ferroptosis induced by cerebral I/R, possibly via PGE2 receptor 3 and PGE2 receptor 4.

Inhibition of ferroptosis inactivates the COX-2/PGE2 pathway. Cerebral ischemia reperfusion injury induces the secretion of PGE2. After the inhibition of ferroptosis by Fer-1, the expression of cyclooxygenases (COX-1 and COX-2) decreased, and PGE2 synthases cPGES, mPGES-1, and mPGES-2 were also reduced. At the same time, the PGE2 degradation enzyme 15-PGDH was also reduced. Changes in these enzymes ultimately result in the declination of PGE2. Besides, the expression of PGE2 receptors EP3 and EP4 is also inhibited, indicating that the function they mediate is also impaired. In conclusion, after cerebral ischemia reperfusion injury, the inhibition of ferroptosis inactivates the COX-2/PGE2 pathway

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Data and materials will be made available under reasonable request.

Change history

References

  1. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A et al (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(7):2064–89

    Article  PubMed  Google Scholar 

  2. GBD (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):439–458

    Article  Google Scholar 

  3. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  4. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50(12):e344–e418

    Article  PubMed  Google Scholar 

  5. George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87(2):297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G et al (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 11(6):1185–1202

    Article  PubMed  Google Scholar 

  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamaguchi Y, Kasukabe T, Kumakura S (2018) Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 52(3):1011–1022

    CAS  PubMed  Google Scholar 

  10. Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W et al (2019) Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med 23(11):7349–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD et al (2017) Ferroptosis, but Not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229

    Article  CAS  PubMed  Google Scholar 

  12. Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF et al (2018) Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 314(5):F702-f714

    Article  CAS  PubMed  Google Scholar 

  13. Lane DJR, Ayton S, Bush AI (2018) Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64(s1):S379-s395

    Article  CAS  PubMed  Google Scholar 

  14. Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY et al (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25(4):465–475

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F et al (2019) P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life 71(1):45–56

    Article  CAS  PubMed  Google Scholar 

  16. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P et al (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12(5):447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo H, Zhu L, Tang P, Chen D, Li Y, Li J et al (2021) Carthamin yellow improves cerebral ischemia-reperfusion injury by attenuating inflammation and ferroptosis in rats. Int J Mol Med 47(4):4885

    Article  Google Scholar 

  20. Chen W, Jiang L, Hu Y, Tang N, Liang N, Li XF et al (2021) Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis. Brain Res 1752:147216

    Article  CAS  PubMed  Google Scholar 

  21. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22(11):1520–1530

    Article  CAS  PubMed  Google Scholar 

  22. Xu Y, Liu Y, Li K, Miao S, Lv C, Wang C et al (2020) Regulation of PGE(2) pathway during cerebral ischemia reperfusion injury in rat. Cell Mol Neurobiol. 41(7):1483–1496

    Article  PubMed  Google Scholar 

  23. Candelario-Jalil E, González-Falcón A, García-Cabrera M, Alvarez D, Al-Dalain S, Martínez G et al (2003) Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 86(3):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng Z, Li M, Tan X, Xiang P, Wang H, Luo Y et al (2020) miR-211–5p alleviates focal cerebral ischemia-reperfusion injury in rats by down-regulating the expression of COX2. Biochem Pharmacol 177:113983

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda-Matsuo Y, Hirayama Y, Ota A, Uematsu S, Akira S, Sasaki Y (2010) Microsomal prostaglandin E synthase-1 and cyclooxygenase-2 are both required for ischaemic excitotoxicity. Br J Pharmacol 159(5):1174–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmad AS, Yun YT, Ahmad M, Maruyama T, Doré S (2008) Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. Neurotox Res 14(4):343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmad M, Saleem S, Shah Z, Maruyama T, Narumiya S, Doré S (2010) The PGE2 EP2 receptor and its selective activation are beneficial against ischemic stroke. Exp Transl Stroke Med 2(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ikeda-Matsuo Y, Tanji H, Narumiya S, Sasaki Y (2011) Inhibition of prostaglandin E2 EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. J Neuroimmunol 238(1–2):34–43

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL et al (2021) Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 35(5):2727–2744

    Article  CAS  Google Scholar 

  30. Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y et al (2019) Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull 153:122–132

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Wang J, Chen S, Wu P, Xu S, Wang C et al (2020) miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther 11(1):330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K et al (2018) N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 84(6):854–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 113(44):E6806-e6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yin W, Badr AE, Mychaskiw G, Zhang JH (2002) Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 926(1–2):165–171

    Article  CAS  PubMed  Google Scholar 

  35. Ikeda-Matsuo Y, Tanji H, Ota A, Hirayama Y, Uematsu S, Akira S et al (2010) Microsomal prostaglandin E synthase-1 contributes to ischaemic excitotoxicity through prostaglandin E2 EP3 receptors. Br J Pharmacol 160(4):847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimamura M, Zhou P, Casolla B, Qian L, Capone C, Kurinami H et al (2013) Prostaglandin E2 type 1 receptors contribute to neuronal apoptosis after transient forebrain ischemia. J Cereb Blood Flow Metab 33(8):1207–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Liu Y, Zhou H, Fu X, Hu G (2017) Epoxyeicosatrienoic acid ameliorates cerebral ischemia-reperfusion injury by inhibiting inflammatory factors and pannexin-1. Mol Med Rep 16(2):2179–2184

    Article  CAS  PubMed  Google Scholar 

  38. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F et al (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6(1):41–53

    Article  CAS  PubMed  Google Scholar 

  40. Dai E, Meng L, Kang R, Wang X, Tang D (2020) ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun 522(2):415–421

    Article  CAS  PubMed  Google Scholar 

  41. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593(7860):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients for granting permission to publish this information.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81571880, 81373147, 30901555, 30972870, 81360080) and the Natural Science Foundation of Hunan Province (2016JJ2157), the Fundamental Research Funds for the Central Universities of Central South University (2020zzts222). All the funding bodies funded in the study design, collection, analysis, interpretation of data, and writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ying Liu and Jie Zhao designed and directed the project. Dun Yuan and Shun Yang collected clinical samples. Yunfei Xu and Kexin Li performed the experiments. Yunfei Xu, Kexin Li, Lin Zhou, Yao Zhao, Shuying Miao, and Caihong Lv analyzed the data. All authors discussed the results and contributed to the final manuscript. Yunfei Xu wrote the manuscript.

Corresponding authors

Correspondence to Ying Liu or Jie Zhao.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This research was approved by the ethics committee of the Xiangya Hospital of Central South University, No: 2021101119. All participants involved in this study provided written informed consent. All procedures performed in studies involving animals were by the ethical standards of the institution or practice at which the studies were conducted by Experimental Animal Center of Central South University (Changsha, China), No: 2018sydw0222.

Consent to Participate

All participants involved in this study provided written informed consent.

Consent for Publication

All co-authors approved the final version of the manuscript and agreed to submit it to Molecular Neurobiology.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, Y., Li, K. et al. COX-2/PGE2 Pathway Inhibits the Ferroptosis Induced by Cerebral Ischemia Reperfusion. Mol Neurobiol 59, 1619–1631 (2022). https://doi.org/10.1007/s12035-021-02706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02706-1

Keywords

Navigation