Skip to main content
Log in

The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood–Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood–brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood–brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from the whole genome RNA-sequencing transcriptome and splicing database of mouse cerebral cortex [52]. b Immunofluorescence revealed that TREK-1 protein was extensively expressed in neurons. Astrocytes (c) and OPCs (d) also highly expressed TREK-1, while mature oligodendrocytes or myelin sheaths (e) and microglia (f) seldom expressed TREK-1. In a few brain regions, TREK-1 was detected in endothelial cells (g) and SMCs (h). Interestingly, TREK-1 was also found in the choroid plexus (i). Scale bar = 20 μm in bi

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

K2P:

Two-pore domain K channel

TWIK:

Tandem of pore domains in a weak inward rectifying K channel

TREK:

TWIK-related K channel

TRAAK:

TWIK-related arachidonic acid activated K channel

TASK:

TWIK-related acid sensitive K channel

BBB:

Blood–brain barrier

WT:

Wild type

KO:

Knockout

MMP-9:

Matrix metalloproteinase-9

ACA:

Anterior carotid artery

CCA:

Common carotid artery

ECA:

External carotid artery

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

PCA:

Posterior cerebral artery

PCoA:

Posterior communicating artery

MCAO:

Middle cerebral artery occlusion

PCR:

Polymerase chain reaction

rCBF:

Relative cerebral blood flow

OPC:

Oligodendrocyte precursor cell

OGD:

Oxygen glucose deprivation

CNS:

Central nervous system

TBS:

Tris-buffered saline

PBS:

Phosphate buffered saline

TUNEL:

Terminal deoxynucleotidyl transferase-mediated nick end labeling

AQP4:

Aquaporin-4

EAE:

Experiment autoimmune encephalomyelitis

GFAP:

Glial filament acid protein

TJs:

Tight junctions

BMs:

Basement membranes

ROIs:

Region of interests

ICAM-1:

Intercellular adhesion molecule-1

PECAM-1:

Platelet endothelial cellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

RRID:

Research resource identifiers

IF:

Immunofluorescence

WB:

Western blot

GFAP:

Glial fibrillary acidic protein

References

  1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5:7010. https://doi.org/10.1038/s41572-019-0118-8

    Article  PubMed  Google Scholar 

  2. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. Embo J 15(24):6854–6862. https://doi.org/10.1002/j.1460-2075.1996.tb01077.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Honore E (2007) The neuronal background K-2P channels: focus on TREK1. Nat Rev Neurosci 8(4):251–261. https://doi.org/10.1038/nrn2117

    Article  CAS  PubMed  Google Scholar 

  4. Djillani A, Mazella J, Heurteaux C, Borsotto M (2019) Role of TREK-1 in health and disease, focus on the central nervous system. Front Pharmacol 10:15. https://doi.org/10.3389/fphar.2019.00379

    Article  CAS  Google Scholar 

  5. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90(2):559–605. https://doi.org/10.1152/physrev.00029.2009

    Article  CAS  PubMed  Google Scholar 

  6. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684–2695. https://doi.org/10.1038/sj.emboj.7600234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2(5):422–426

    Article  CAS  PubMed  Google Scholar 

  8. Pavel MA, Petersen EN, Wang H, Lerner RA, Hansen SB (2020) Studies on the mechanism of general anesthesia. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2004259117

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25(11):2368–2376. https://doi.org/10.1038/sj.emboj.7601116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanda H, Ling J, Tonomura S, Noguchi K, Matalon S, Gu JG (2019) TREK-1 and TRAAK are principal K+ channels at the nodes of ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron 104(5):960. https://doi.org/10.1016/j.neuron.2019.08.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devilliers M, Busserolles J, Lolignier S, Deval E, Pereira V, Alloui A, Christin M, Mazet B, Delmas P, Noel J, Lazdunski M, Eschalier A (2013) Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat Commun 4:9. https://doi.org/10.1038/ncomms3941

    Article  CAS  Google Scholar 

  12. Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Maati HMO, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG (2013) Endothelial TWIK-related potassium channel-1 (TREK 1) regulates immune-cell trafficking into the CNS. Nat Med 19(9):1161–1165. https://doi.org/10.1038/nm.3303

    Article  CAS  PubMed  Google Scholar 

  13. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9(9):1134–1141. https://doi.org/10.1038/nn1749

    Article  CAS  PubMed  Google Scholar 

  14. Xu XH, Pan YP, Wang XL (2004) Alterations in the expression of lipid and mechano-gated two-pore domain potassium channel genes in rat brain following chronic cerebral ischemia. Mol Brain Res 120(2):205–209. https://doi.org/10.1016/j.molbrainres.2003.09.020

    Article  CAS  PubMed  Google Scholar 

  15. Li ZB, Zhang HX, Li LL, Wang XL (2005) Enhanced expressions of arachidonic acid-sensitive tandem-pore domain potassium channels in rat experimental acute cerebral ischemia. Biochem Biophys Res Commun 327(4):1163–1169. https://doi.org/10.1016/j.bbrc.2004.12.124

    Article  CAS  PubMed  Google Scholar 

  16. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. Embo J 19(8):1784–1793. https://doi.org/10.1093/emboj/19.8.1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M (2006) Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 137(1):241–251. https://doi.org/10.1016/j.neuroscience.2005.08.083

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Sun Q, Chen XJ, Jing L, Wang W, Yu ZY, Zhang GB, Xie MJ (2014) Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem Res 39(9):1797–1808. https://doi.org/10.1007/s11064-014-1390-3

    Article  CAS  PubMed  Google Scholar 

  19. Bourourou M, Heurteaux C, Blondeau N (2016) Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke. Neuropharmacology 108:60–72. https://doi.org/10.1016/j.neuropharm.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  20. Meadows HJ, Chapman CG, Duckworth DM, Kelsell RE, Murdock PR, Nasir S, Rennie G, Randall AD (2001) The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K+ channels TREK-1 and TRAAK. Brain Res 892(1):94–101. https://doi.org/10.1016/S0006-8993(00)03239-X

    Article  CAS  PubMed  Google Scholar 

  21. Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Brit J Pharmacol 144(6):821–829. https://doi.org/10.1038/sj.bjp.0706068

    Article  CAS  Google Scholar 

  22. Lin DH, Zhang XR, Ye DQ, Xi GJ, Hui JJ, Liu SS, Li LJ, Zhang ZJ (2015) The role of the two-pore domain potassium channel TREK-1 in the therapeutic effects of escitalopram in a rat model of poststroke depression. CNS Neurosci Ther 21(6):504–512. https://doi.org/10.1111/cns.12384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji XC, Zhao WH, Cao DX, Shi QQ, Wang XL (2011) Novel neuroprotectant chiral 3-n-butylphthalide inhibits tandem-pore-domain potassium channel TREK-1. Acta Pharmacol Sin 32(2):182–187. https://doi.org/10.1038/aps.2010.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang WP, Liu DM, Xiao Q, Cai J, Feng N, Xu SF, Wang L, Yin DL, Wang XL (2018) Lig4-4 selectively inhibits TREK-1 and plays potent neuroprotective roles in vitro and in rat MCAO model. Neurosci Lett 671:93–98. https://doi.org/10.1016/j.neulet.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  25. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cerebr Blood F Met 27(6):1108–1128. https://doi.org/10.1038/sj.jcbfm.9600410

    Article  CAS  Google Scholar 

  26. Wang L, Traystman RJ, Murphy SJ (2008) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 8(1):104–110. https://doi.org/10.1016/j.coph.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  27. Tong L, Cai M, Huang Y, Zhang H, Su B, Li Z, Dong H (2014) Activation of K2P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning. Brit J Anaesth 113(1):157–167. https://doi.org/10.1093/bja/aet338

    Article  CAS  PubMed  Google Scholar 

  28. Wang K, Kong XG (2016) Isoflurane preconditioning induces neuroprotection by up-regulation of TREK1 in a rat model of spinal cord ischemic injury. Biomol Ther 24(5):495–500. https://doi.org/10.4062/biomolther.2015.206

    Article  CAS  Google Scholar 

  29. Yin X, Su BX, Zhang HP, Song WY, Wu H, Chen XM, Zhang XJ, Dong HL, Xiong LZ (2012) TREK1 activation mediates spinal cord ischemic tolerance induced by isoflurane preconditioning in rats. Neurosci Lett 515(2):115–120. https://doi.org/10.1016/j.neulet.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  30. Pan LX, Yang FY, Lu CX, Jia CX, Wang Q, Zeng KX (2017) Effects of sevoflurane on rats with ischemic brain injury and the role of the TREK-1 channel. Exp Ther Med 14(4):2937–2942. https://doi.org/10.3892/etm.2017.4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao G, Yang L, Wang S, Cai M, Sun S, Dong H, Xiong L (2018) TREK-2 mediates the neuroprotective effect of isoflurane preconditioning against acute cerebral ischemia in the rat. Rejuvenation Res. https://doi.org/10.1089/rej.2017.2039

    Article  PubMed  Google Scholar 

  32. Guo HY, Peng ZW, Yang L, Liu X, Xie YN, Cai YH, Xiong LZ, Zeng Y (2017) TREK-1 mediates isoflurane-induced cytotoxicity in astrocytes. BMC Anesthesiol 17:8. https://doi.org/10.1186/s12871-017-0420-5

    Article  CAS  Google Scholar 

  33. Zhou CH, Zhang YH, Xue F, Xue SS, Chen YC, Gu T, Peng ZW, Wang HN (2017) Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1. Mol Med Rep 16(5):7305–7314. https://doi.org/10.3892/mmr.2017.7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai YH, Peng ZW, Guo HY, Wang F, Zeng Y (2017) TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice. Neurobiol Learn Mem 145:199–204. https://doi.org/10.1016/j.nlm.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  35. Laigle C, Confort-Gouny S, Le Fur Y, Cozzone PJ, Viola A (2012) Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. Plos One 7(12):e53266. https://doi.org/10.1371/journal.pone.0053266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meuth SG, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss DA, Budde T, Stoll G, Wiendl H (2009) The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 33(1):1–11. https://doi.org/10.1016/j.nbd.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  37. Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W (2010) Expression of the Kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 167(3):758–764. https://doi.org/10.1016/j.neuroscience.2010.02.024

    Article  CAS  PubMed  Google Scholar 

  38. Gob E, Bittner S, Bobak N, Kraft P, Gobel K, Langhauser F, Homola GA, Brede M, Budde T, Meuth SG, Kleinschnitz C (2015) The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration. Pflug Arch Eur J Phy 467(5):973–987. https://doi.org/10.1007/s00424-014-1626-8

    Article  CAS  Google Scholar 

  39. Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth SG (2010) Two pore domain potassium channels in cerebral ischemia: a focus on K2P91 (TASK3, KCNK9). Exp Trans Stroke Med 2(1):14. https://doi.org/10.1186/2040-7378-2-14

    Article  CAS  Google Scholar 

  40. Fang YK, Huang XJ, Wan Y, Tian H, Tian YY, Wang W, Zhu SQ, Xie MJ (2017) Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice. J Neurochem 141(2):236–246. https://doi.org/10.1111/jnc.13980

    Article  CAS  PubMed  Google Scholar 

  41. Fang YK, Tian YY, Huang QB, Wan Y, Xu L, Wang W, Pan DJ, Zhu SQ, Xie MJ (2019) Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflamm 16:96. https://doi.org/10.1186/s12974-019-1485-5

    Article  Google Scholar 

  42. Namiranian K, Brink CD, Goodman JC, Robertson CS, Bryan RM (2011) Traumatic brain injury in mice lacking the K channel, TREK-1. J Cerebr Blood F Met 31(3):E1–E6. https://doi.org/10.1038/jcbfm.2010.223

    Article  CAS  Google Scholar 

  43. Namiranian K, Lloyd EE, Crossland RF, Marrelli SP, Taffet GE, Reddy AK, Hartley CJ, Bryan RM (2010) Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. Am J Physiol Regul Integr Comp Physiol 299(2):R461–R469. https://doi.org/10.1152/ajpregu.00057.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J, Lee WS, Muller J, Parmar J, von Jonquieres G, Stefen H, Guccione E, Fath T, Housley GD, Klugmann M, Ke YD, Ittner LM (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-017-00618-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Engel O, Kolodziej S, Dirnagl U, Prinz V (2011) Modeling stroke in mice - middle cerebral artery occlusion with the filament model. Jove-J Visual Exp 47:e2423. https://doi.org/10.3791/2423

    Article  Google Scholar 

  46. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. Plos Biol 8(4):17. https://doi.org/10.1371/journal.pbio.1000355

    Article  CAS  Google Scholar 

  47. Yang YY, Liu H, Zhang HY, Ye Q, Wang JY, Yang BY, Mao LL, Zhu W, Leak RK, Xiao B, Lu BF, Chen J, Hu XM (2017) ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci 37(18):4692–4704. https://doi.org/10.1523/Jneurosci.3233-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nirwane A, Johnson J, Nguyen B, Miner JH, Yao Y (2019) Mural cell-derived laminin-5 plays a detrimental role in ischemic stroke. Acta Neuropathol Com 7:23. https://doi.org/10.1186/s40478-019-0676-8

    Article  Google Scholar 

  49. Chang JL, Mancuso MR, Maier C, Liang XB, Yuki K, Yang L, Kwong JW, Wang J, Vallon VRM, Vallon M, Kosinski C, Zhang JJH, Mah AT, Xu LJ, Li L, Gholamin S, Reyes TF, Li R, Kuhnert F, Han XY, Yuan J, Chiou SH, Brettman AD, Daly L, Corney DC, Cheshier SH, Shortliffe LD, Wu XW, Snyder M, Chan P, Giffard RG, Chang HY, Andreasson K, Kuo CJ (2017) Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med 23(4):450. https://doi.org/10.1038/nm.4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. Plos One 6(11):e27385. https://doi.org/10.1371/journal.pone.0027385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen JN, Luo YT, Hui H, Cai TX, Huang HX, Yang FQ, Feng J, Zhang JJ, Yan XY (2017) CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci USA 114(36):E7622–E7631. https://doi.org/10.1073/pnas.1710848114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Chen KN, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng SY, Liddelow SA, Zhang CL, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/Jneurosci.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun W, Cornwell A, Li JS, Peng SS, Osorio MJ, Aalling N, Wang S, Benraiss A, Lou NH, Goldman SA, Nedergaard M (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci 37(17):4493–4507. https://doi.org/10.1523/Jneurosci.3199-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang XY, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi YJ (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  55. Talley EM, Solorzano G, Lei QB, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21(19):7491–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hervieu GJ, Cluderay JE, Gray CW, Green PJ, Ranson JL, Randall AD, Meadows HJ (2001) Distribution and expression of trek-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103(4):899–919. https://doi.org/10.1016/s0306-4522(01)00030-6

    Article  CAS  PubMed  Google Scholar 

  57. Gu WL, Schlichthorl G, Hirsch JR, Engels H, Karschin C, Karschin A, Derst C, Steinlein OK, Daut J (2002) Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J Physiol-London 539(3):657–668. https://doi.org/10.1113/jphysiol.2001.013432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, Murdock P, Chapman CG (2000) Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflug Arch Eur J Phy 439(6):714–722. https://doi.org/10.1007/s004240050997

    Article  CAS  Google Scholar 

  59. Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Mol Brain Res 86(1–2):101–114. https://doi.org/10.1016/s0169-328x(00)00263-1

    Article  CAS  PubMed  Google Scholar 

  60. Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhauser C (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29(23):7474–7488. https://doi.org/10.1523/Jneurosci.3790-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101(2):176–184. https://doi.org/10.1161/circresaha.107.154443

    Article  CAS  PubMed  Google Scholar 

  62. Aller MI, Wisden W (2008) Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 151(4):1154–1172. https://doi.org/10.1016/j.neuroscience.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  63. Xu XG, Pan YP, Wang XL (2002) mRNA expression of the lipid and mechano-gated 2P domain K+ channels during rat brain development. J Neurogenet 16(4):263–269. https://doi.org/10.1080/01677060290209777

    Article  CAS  PubMed  Google Scholar 

  64. Kanjhan R, Anselme AM, Noakes PG, Bellingham MC (2004) Postnatal changes in TASK-1 and TREK-1 expression in rat brain stem and cerebellum. NeuroReport 15(8):1321–1324. https://doi.org/10.1097/01.wnr.0000127462.15985.dc

    Article  PubMed  Google Scholar 

  65. Xi GJ, Zhang XR, Zhang L, Sui YX, Hui JJ, Liu SS, Wang YX, Li LJ, Zhang ZJ (2011) Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1. Psychopharmacology 214(3):747–759. https://doi.org/10.1007/s00213-010-2077-3

    Article  CAS  PubMed  Google Scholar 

  66. Pruss H, Dewes M, Derst C, Fernandez-Klett F, Veh RW, Priller J (2011) Potassium channel expression in adult murine neural progenitor cells. Neuroscience 180:19–29. https://doi.org/10.1016/j.neuroscience.2011.02.021

    Article  CAS  PubMed  Google Scholar 

  67. Bando Y, Hirano T, Tagawa Y (2014) Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cereb Cortex 24(4):1017–1029. https://doi.org/10.1093/cercor/bhs387

    Article  PubMed  Google Scholar 

  68. Lauritzen I, Chemin J, Honore E, Jodar M, Guy N, Lazdunski M, Patel AJ (2005) Cross-talk between the mechano-gated K-2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6(7):642–648. https://doi.org/10.1038/sj.embor.7400449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mirkovic K, Palmersheim J, Lesage F, Wickman K (2012) Behavioral characterization of mice lacking Trek channels. Front Behav Neurosci 6:9. https://doi.org/10.3389/fnbeh.2012.00060

    Article  CAS  Google Scholar 

  70. Wang W, Kiyoshi CM, Du YX, Taylor AT, Sheehan ER, Wu X, Zhou M (2020) TREK-1 null impairs neuronal excitability, synaptic plasticity, and cognitive function. Mol Neurobiol 57(3):1332–1346. https://doi.org/10.1007/s12035-019-01828-x

    Article  CAS  PubMed  Google Scholar 

  71. Jonsson BA, Bjornsdottir G, Thorgeirsson TE, Ellingsen LM, Walters GB, Gudbjartsson DF, Stefansson H, Stefansson K, Ulfarsson MO (2019) Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun 10:5409. https://doi.org/10.1038/s41467-019-13163-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Guen Y, Philippe C, Riviere D, Lemaitre H, Grigis A, Fischer C, Dehaene-Lambertz G, Mangin JF, Frouin V (2019) eQTL of KCNK2 regionally influences the brain sulcal widening: evidence from 15,597 UK Biobank participants with neuroimaging data. Brain Struct Funct 224(2):847–857. https://doi.org/10.1007/s00429-018-1808-9

    Article  CAS  PubMed  Google Scholar 

  73. Lloyd EE, Marrelli SP, Bryan RM (2009) cGMP does not activate two-pore domain K+ channels in cerebrovascular smooth muscle. Am J Physiol-Heart C 296(6):H1774–H1780. https://doi.org/10.1152/ajpheart.00082.2009

    Article  CAS  Google Scholar 

  74. Bryan RM, You JP, Phillips SC, Andresen JJ, Lloyd EE, Rogers PA, Dryer SE, Marrelli SP (2006) Evidence for two-pore domain potassium channels in rat cerebral arteries. Am J Physiol-Heart C 291(2):H770–H780. https://doi.org/10.1152/ajpheart.01377.2005

    Article  CAS  Google Scholar 

  75. Bittner S, Ruck T, Fernandez-Orth J, Meuth SG (2014) TREK-king the blood-brain-barrier. J Neuroimmune Pharmacol 9(3):293–301. https://doi.org/10.1007/s11481-014-9530-8

    Article  PubMed  Google Scholar 

  76. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82(3):603–617. https://doi.org/10.1016/j.neuron.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi YJ, Zhang LL, Pu HJ, Mao LL, Hu XM, Jiang XY, Xu N, Stetler RA, Zhang F, Liu XR, Leak RK, Keep RF, Ji XM, Chen J (2016) Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 7:10523. https://doi.org/10.1038/ncomms10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roan E, Waters CM, Teng B, Ghosh M, Schwingshackl A (2014) The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. Plos One 9(2):e89429. https://doi.org/10.1371/journal.pone.0089429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maati HMO, Veyssiere J, Labbal F, Coppola T, Gandin C, Widmann C, Mazella J, Heurteaux C, Borsotto M (2012) Spadin as a new antidepressant: absence of TREK-1-related side effects. Neuropharmacology 62(1):278–288. https://doi.org/10.1016/j.neuropharm.2011.07.019

    Article  CAS  Google Scholar 

  80. Veyssiere J, Maati HMO, Mazella J, Gaudriault G, Moreno S, Heurteaux C, Borsotto M (2015) Retroinverso analogs of spadin display increased antidepressant effects. Psychopharmacology 232(3):561–574. https://doi.org/10.1007/s00213-014-3683-2

    Article  CAS  PubMed  Google Scholar 

  81. Devader C, Khayachi A, Veyssiere J, Maati HMO, Roulot M, Moreno S, Borsotto M, Martin S, Heurteaux C, Mazella J (2015) In vitro and in vivo regulation of synaptogenesis by the novel antidepressant spadin. Brit J Pharmacol 172(10):2604–2617. https://doi.org/10.1111/bph.13083

    Article  CAS  Google Scholar 

  82. Djillani A, Pietri M, Moreno S, Heurteaux C, Mazella J, Borsotto M (2017) Shortened spadin analogs display better TREK-1 inhibition, in vivo stability and antidepressant activity. Front Pharmacol 8:643. https://doi.org/10.3389/fphar.2017.00643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pietri M, Djillani A, Mazella J, Borsotto M, Heurteaux C (2019) First evidence of protective effects on stroke recovery and post-stroke depression induced by sortilin-derived peptides. Neuropharmacology 158:107715. https://doi.org/10.1016/j.neuropharm.2019.107715

    Article  CAS  PubMed  Google Scholar 

  84. Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M (2019) Fighting against depression with TREK-1 blockers: past and future. A focus on spadin. Pharmacol Ther 194:185–198. https://doi.org/10.1016/j.pharmthera.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  85. Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL (2017) K(2P)2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 547(7663):364. https://doi.org/10.1038/nature22988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Min Zhou for gifting TREK-1 KO mice.

Funding

This study was supported by the National Natural Science Foundation of China (81501020, 81974180, 82001272) and Hubei Natural Science Foundation (2019CFB678).

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu, Minjie Xie, and Wei Wang conceived the study. Xiaolong Zheng, Yang Liu, Minjie Xie, and Wei Wang designed the experiments. Xiaolong Zheng and Jun Yang performed experiments. Zhou Zhu, Yongkang Fang, and Yeye Tian analyzed results. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Ethics Approval

All animal experiments were performed under the protocol approved by the Committee on the Ethics of Animal Experiments and the Institutional Animal Care and Use Committee at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (ethics approval number, TJH-201908001).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

12035_2021_2702_MOESM2_ESM.pdf

Fig. S1 TREK-1 KO attenuated infarction in mice after focal cerebral ischemia. a, Body weight loss in male mice 72 hours after tMCAO, n=12 animals in the WT and KO groups. b, Normalized spleen weight ratio in male mice 72 hours after tMCAO, n=12 animals in the WT and KO groups. c, Survival curve of male mice 72 hours after tMCAO, n=12 animals in the WT and KO groups. d-f, edema area, edema volume and edema ratio in male mice, n=12 animals in the WT and KO groups. g-h, Infarct area and infarct volume in male mice, n=12 animals in the WT and KO groups. i, Representative images of CD3 staining in the infarct core of male mouse brain sections. j, Body weight loss in female mice 72 hours after tMCAO, n=6 animals in the WT and KO groups. k, Normalized spleen weight ratio in female mice 72 hours after tMCAO, n=6 animals in the WT and KO groups. l, Survival curve of female mice after tMCAO; n=6 animals in the WT and KO groups. m-o, Edema area, edema volume and edema ratio in female mice after tMCAO, n=6 animals in the WT and KO groups. p-q, Infarct area, infarct volume in female mice after tMCAO, n=12 animals in the WT and KO groups. Scale bar = 10 μm in i. (PDF 158 KB)

12035_2021_2702_MOESM3_ESM.pdf

Fig. S2 Pharmacological inhibition of TREK-1 attenuated infarction in mice after focal cerebral ischemia. a, Body weight loss in vehicle- and spadin-treated male mice 72 hours after tMCAO, n=10 animals in the vehicle group and 8 animals in the spadin group. b, Normalized spleen weight ratio, n=10 animals in the vehicle group and 8 animals in the spadin group. e, Survival curve of vehicle and spadin male mice, n=10 animals in the vehicle group and 8 animals in the spadin group. d-f, Edema area, edema volume and edema ratio between male vehicle and spadin mice; n=10 animals in the vehicle group and 8 animals in the spadin group. g-h, Infarct area and infarct volume between male vehicle and spadin mice, n=10 animals in the vehicle group and 8 animals in the spadin group. (PDF 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Yang, J., Zhu, Z. et al. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood–Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 59, 2305–2327 (2022). https://doi.org/10.1007/s12035-021-02702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02702-5

Keywords

Navigation