Skip to main content
Log in

Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) is a form of stroke, characterized by high morbidity and mortality and currently lacks specific therapy. ICH leads to endoplasmic reticulum (ER) stress, which can induce neurological impairment through crosstalk with programmed cell death (PCD). Pyroptosis, a newly discovered form of PCD, has received attention because of its close relationship with some certain diseases, such as traumatic brain injury and ischemic and hemorrhagic stroke. However, the relationship between ER stress and pyroptosis in ICH remains unclear. In this study, we investigated the role of ER stress in evoking neuronal pyroptosis and related mechanisms in a mouse ICH model. We used tauroursodeoxycholic acid (TUDCA) to inhibit ER stress and observed that TUDCA reduces neuronal pyroptosis and has a neuroprotective role. We explored the potential mechanisms underlying the regulation of neuronal pyroptosis by ER stress through testing the expression of interleukin-13 (IL-13). We found that ER stress inhibition alleviates neuronal pyroptosis through decreasing the expression of IL-13 after ICH. In summary, this study revealed that IL-13 is involved in ER stress–induced neuronal pyroptosis after ICH, pointing to IL-13 as a novel therapeutic target for ICH treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An SJ, Kim TJ, Yoon B-W (2017) Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 19(1):3–10. https://doi.org/10.5853/jos.2016.00864

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuramatsu JB, Huttner HB, Schwab S (2013) Advances in the management of intracerebral hemorrhage. J Neural Transm (Vienna) 120(Suppl 1):S35–S41. https://doi.org/10.1007/s00702-013-1040-y

    Article  Google Scholar 

  3. Ziai WC, Carhuapoma JR (2018) Intracerebral hemorrhage. Continuum (Minneap Minn) 24(6):1603–1622. https://doi.org/10.1212/con.0000000000000672

    Article  Google Scholar 

  4. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786. https://doi.org/10.1161/STROKEAHA.110.596718

    Article  PubMed  PubMed Central  Google Scholar 

  5. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2(10):e135. https://doi.org/10.1371/journal.pgen.0020135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75(2):209–219. https://doi.org/10.1002/ana.24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63. https://doi.org/10.3389/fncel.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin X, Ye H, Siaw-Debrah F, Pan S, He Z, Ni H, Xu Z, Jin K et al (2018) AC-YVAD-CMK inhibits pyroptosis and improves functional outcome after intracerebral hemorrhage. Biomed Res Int 2018:3706047–3706010. https://doi.org/10.1155/2018/3706047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi F, Kouadir M, Yang Y (2015) NALP3 inflammasome activation in protein misfolding diseases. Life Sci 135:9–14. https://doi.org/10.1016/j.lfs.2015.05.011

    Article  CAS  Google Scholar 

  11. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M et al (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8(6):915–926. https://doi.org/10.4161/auto.19716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng C, Zhang J, Dang B, Li H, Shen H, Li X, Wang Z (2018) PERK pathway activation promotes intracerebral hemorrhage induced secondary brain injury by inducing neuronal apoptosis both in vivo and in vitro. Front Neurosci 12:111. https://doi.org/10.3389/fnins.2018.00111

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Guo X, Ge Q, Zhao Y, Mu H, Zhang J (2019) ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Med Cell Longev 2019:3462530–3462518. https://doi.org/10.1155/2019/3462530

    Article  CAS  Google Scholar 

  15. Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, Adam G, Lavallard VJ et al (2015) ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 6:e1879. https://doi.org/10.1038/cddis.2015.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J-R, Yao F-H, Zhang J-G, Ji Z-Y, Li K-L, Zhan J, Tong Y-N, Lin L-R et al (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Ren Physiol 306(1):F75–F84. https://doi.org/10.1152/ajprenal.00117.2013

    Article  CAS  Google Scholar 

  17. Liu F, Cui Y, Ge P, Luan J, Zhou X, Han J (2015) Tauroursodeoxycholic acid attenuates inorganic phosphate-induced osteoblastic differentiation and mineralization in NIH3T3 fibroblasts by inhibiting the ER stress response PERK-eIF2alpha-ATF4 pathway. Drug Discov Ther 9(1):38–44. https://doi.org/10.5582/ddt.2015.01008

    Article  CAS  PubMed  Google Scholar 

  18. Delmotte P, Sieck GC (2015) Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 93(2):97–110. https://doi.org/10.1139/cjpp-2014-0361

    Article  CAS  PubMed  Google Scholar 

  19. Arensdorf AM, Rutkowski DT (2013) Endoplasmic reticulum stress impairs IL-4/IL-13 signaling through C/EBPβ-mediated transcriptional suppression. J Cell Sci 126(Pt 17):4026–4036. https://doi.org/10.1242/jcs.130757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Ma L, Luo CL, Wang T, Zhang MY, Shen X, Meng HH, Ji MM et al (2017) IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway. Mol Neurobiol 54(5):3879–3892. https://doi.org/10.1007/s12035-016-9947-6

    Article  CAS  PubMed  Google Scholar 

  21. Wang ZF, Gao C, Chen W, Gao Y, Wang HC, Meng Y, Luo CL, Zhang MY et al (2019) Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem 161:12–25. https://doi.org/10.1016/j.nlm.2019.03.002

    Article  PubMed  Google Scholar 

  22. Niu M, Dai X, Zou W, Yu X, Teng W, Chen Q, Sun X, Yu W et al (2017) Autophagy, endoplasmic reticulum stress and the unfolded protein response in intracerebral hemorrhage. Transl Neurosci 8:37–48. https://doi.org/10.1515/tnsci-2017-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8(3):150–159. https://doi.org/10.1016/j.arr.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  24. Nakka VP, Prakash-Babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53(1):532–544. https://doi.org/10.1007/s12035-014-9029-6

    Article  CAS  PubMed  Google Scholar 

  25. Tsujii S, Ishisaka M, Shimazawa M, Hashizume T, Hara H (2015) Zonisamide suppresses endoplasmic reticulum stress-induced neuronal cell damage in vitro and in vivo. Eur J Pharmacol 746:301–307. https://doi.org/10.1016/j.ejphar.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  26. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138. https://doi.org/10.1126/scitranslmed.3006767

    Article  CAS  PubMed  Google Scholar 

  27. Rodrigues CMP, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092. https://doi.org/10.1073/pnas.1031632100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaspar JM, Martins A, Cruz R, Rodrigues CM, Ambrósio AF, Santiago AR (2013) Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience 253:380–388. https://doi.org/10.1016/j.neuroscience.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  29. Colak A, Kelten B, Sağmanligil A, Akdemir O, Karaoğlan A, Sahan E, Celik O, Barut S (2008) Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats. J Clin Neurosci 15(6):665–671. https://doi.org/10.1016/j.jocn.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  30. Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J, Nakayama KI, Aaronson SA, Lee SW (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 6(2):121–128. https://doi.org/10.1038/ncb1087

    Article  CAS  PubMed  Google Scholar 

  31. Seyfizadeh N, Seyfizadeh N, Gharibi T, Babaloo Z (2015) Interleukin-13 as an important cytokine: a review on its roles in some human diseases. Acta Microbiol Immunol Hung 62(4):341–378. https://doi.org/10.1556/030.62.2015.4.2

    Article  CAS  PubMed  Google Scholar 

  32. Leonard WJ, Lin JX (2000) Cytokine receptor signaling pathways. J Allergy Clin Immunol 105(5):877–888. https://doi.org/10.1067/mai.2000.106899

    Article  CAS  PubMed  Google Scholar 

  33. Pastuszak-Lewandoska D, Domańska-Senderowska D, Antczak A, Kordiak J, Górski P, Czarnecka KH, Migdalska-Sęk M, Nawrot E et al (2018) The expression levels of IL-4/IL-13/STAT6 signaling pathway genes and SOCS3 could help to differentiate the histopathological subtypes of non-small cell lung carcinoma. Mol Diagn Ther 22(5):621–629. https://doi.org/10.1007/s40291-018-0355-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Massaro AN, Wu YW, Bammler TK, Comstock B, Mathur A, McKinstry RC, Chang T, Mayock DE et al (2018) Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. J Pediatr 194:67–75.e61. https://doi.org/10.1016/j.jpeds.2017.10.060

    Article  CAS  PubMed  Google Scholar 

  35. Ansari MA (2015) Temporal profile of M1 and M2 responses in the hippocampus following early 24h of neurotrauma. J Neurol Sci 357(1–2):41–49. https://doi.org/10.1016/j.jns.2015.06.062

    Article  PubMed  Google Scholar 

  36. Morrison BE, Marcondes MC, Nomura DK, Sanchez-Alavez M, Sanchez-Gonzalez A, Saar I, Kim KS, Bartfai T et al (2012) Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. J Immunol 189(12):5498–5502. https://doi.org/10.4049/jimmunol.1102150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bluthé RM, Bristow A, Lestage J, Imbs C, Dantzer R (2001) Central injection of interleukin-13 potentiates LPS-induced sickness behavior in rats. Neuroreport 12(18):3979–3983. https://doi.org/10.1097/00001756-200112210-00025

    Article  PubMed  Google Scholar 

  38. Yadav MC, Burudi EM, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55(13):1385–1396. https://doi.org/10.1002/glia.20544

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park KW, Baik HH, Jin BK (2009) IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J Immunol 183(7):4666–4674. https://doi.org/10.4049/jimmunol.0803392

    Article  CAS  PubMed  Google Scholar 

  40. Yang MS, Ji KA, Jeon SB, Jin BK, Kim SU, Jou I, Joe E (2006) Interleukin-13 enhances cyclooxygenase-2 expression in activated rat brain microglia: implications for death of activated microglia. J Immunol 177(2):1323–1329. https://doi.org/10.4049/jimmunol.177.2.1323

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant no. 81530062, 81871536, and 81971800) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiping Chen or Luyang Tao.

Ethics declarations

All animal procedures were approved by the Institutional Animal Use and Care Committee at Soochow University and carried out in accordance with the guidelines of Animal Use and Care of the National Institutes of Health (NIH) and the Animal Research: Reporting In Vivo Experiments (ARRIVE)

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 12722 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Gao, C., Yan, Y. et al. Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model. Mol Neurobiol 57, 5324–5335 (2020). https://doi.org/10.1007/s12035-020-02097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02097-9

Keywords

Navigation