Skip to main content
Log in

Brain-Derived Neurotrophic Factor Prevents Depressive-Like Behaviors in Early-Symptomatic YAC128 Huntington’s Disease Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the Huntington disease gene. The symptomatic stage of the disease is defined by the onset of motor symptoms. However, psychiatric disturbances, including depression, are common features of HD and can occur a decade before the manifestation of motor symptoms. We used the YAC128 transgenic mice (which develop motor deficits at a later stage, allowing more time to study depressive behaviors without the confounding effects of motor impairment) to test the effects of intranasal brain-derived neurotrophic factor (BDNF) treatment for 15 days in the occurrence of depressive-like behaviors. Using multiple well-validated behavioral tests, we found that BDNF treatment alleviated anhedonic and depressive-like behaviors in the YAC128 HD mice. Furthermore, we also investigated whether the antidepressant-like effects of BDNF were associated with an increase in adult hippocampal neurogenesis. However, BDNF treatment only increased cell proliferation and neuronal differentiation in the hippocampal dentate gyrus (DG) of wild-type (WT) mice, without altering these parameters in their YAC128 counterparts. Moreover, BDNF treatment did not cause an increase in the number of dendritic branches in the hippocampal DG when compared with animals treated with vehicle. In conclusion, our results suggest that non-invasive administration of BDNF via the intranasal route may have important therapeutic potential for treating mood disturbances in early-symptomatic HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li S-H, Li X-J (2004) Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20(3):146–154. https://doi.org/10.1016/j.tig.2004.01.008

    Article  PubMed  CAS  Google Scholar 

  2. Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep 5(10):958–963. https://doi.org/10.1038/sj.embor.7400250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bates GP, Harper PS, Jones AL (2002) Huntington’s disease. Oxford University Press, Oxford, UK

    Google Scholar 

  4. Beglinger LJ, O’Rourke JJ, Wang C, Langbehn DR, Duff K, Paulsen JS, Huntington Study Group I (2010) Earliest functional declines in Huntington disease. Psychiatry Res 178(2):414–418

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schoenfeld M, Myers RH, Cupples LA, Berkman B, Sax DS, Clark E (1984) Increased rate of suicide among patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 47(12):1283–1287. https://doi.org/10.1136/jnnp.47.12.1283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Di Maio L, Squitieri F, Napolitano G, Campanella G, Trofatter JA, Conneally PM (1993) Suicide risk in Huntington’s disease. J Med Genet 30(4):293–295. https://doi.org/10.1136/jmg.30.4.293

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duff K, Paulsen J, Mills J, Beglinger L, Moser D, Smith M, Langbehn D, Stout J et al (2010) Mild cognitive impairment in prediagnosed Huntington disease. Neurology 75(6):500–507. https://doi.org/10.1212/WNL.0b013e3181eccfa2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Van Duijn E, Kingma E, Van der Mast R (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatr Clin Neurosci 19(4):441–448

    Article  Google Scholar 

  9. Zappacosta B, Monza D, Meoni C, Austoni L, Soliveri P, Gellera C, Alberti R, Mantero M et al (1996) Psychiatric symptoms do not correlate with cognitive decline, motor symptoms, or cag repeat length in Huntington’s disease. Arch Neurol 53(6):493–497. https://doi.org/10.1001/archneur.1996.00550060035012

    Article  PubMed  CAS  Google Scholar 

  10. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC, Group P-HIotHS (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62(12):1341–1346

    Article  PubMed  Google Scholar 

  11. Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G, Craufurd D (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78(9):939–943. https://doi.org/10.1136/jnnp.2006.103309

    Article  PubMed  Google Scholar 

  12. Slow EJ, Van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567. https://doi.org/10.1093/hmg/ddg169

    Article  PubMed  CAS  Google Scholar 

  13. Van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR, Hayden MR (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14(24):3823–3835. https://doi.org/10.1093/hmg/ddi407

    Article  PubMed  Google Scholar 

  14. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersén Å, Hayden MR (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132(4):919–932

    Article  PubMed  Google Scholar 

  15. Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25(16):4169–4180. https://doi.org/10.1523/JNEUROSCI.0590-05.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, Christie BR (2011) Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis 41(2):249–260. https://doi.org/10.1016/j.nbd.2010.09.012

    Article  PubMed  CAS  Google Scholar 

  17. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science (New York, NY) 293(5529):493–498. https://doi.org/10.1126/science.1059581

    Article  CAS  Google Scholar 

  18. Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, De Mey J, MacDonald ME et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118(1):127–138. https://doi.org/10.1016/j.cell.2004.06.018

    Article  PubMed  CAS  Google Scholar 

  19. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in Rat Brain by Chronic Electroconvulsive Seizure and Antidepressant Drug Treatments. J Neurosci 75(11):7539–7547

    Article  Google Scholar 

  20. Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26(12):631–638. https://doi.org/10.1016/j.tips.2005.10.005

    Article  PubMed  CAS  Google Scholar 

  21. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12):1043–1049. https://doi.org/10.1016/S0006-3223(00)00228-6

    Article  PubMed  CAS  Google Scholar 

  22. Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16(3):239–249. https://doi.org/10.1002/hipo.20156

    Article  PubMed  CAS  Google Scholar 

  23. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809. https://doi.org/10.1126/science.1083328

    Article  PubMed  CAS  Google Scholar 

  24. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493. https://doi.org/10.1016/j.neuron.2009.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210(1):154–163. https://doi.org/10.1016/j.expneurol.2007.10.015

    Article  PubMed  CAS  Google Scholar 

  26. Alcalá-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK (2010) Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 18(3):179–190. https://doi.org/10.3109/10611860903318134

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vaka SR, Murthy SN, Balaji A, Repka MA (2012) Delivery of brain-derived neurotrophic factor via nose-to-brain pathway. Pharm Res 29(2):441–447. https://doi.org/10.1007/s11095-011-0572-9

    Article  PubMed  CAS  Google Scholar 

  28. Takatsu-Coleman AL, Patti CL, Zanin KA, Zager A, Carvalho RC, Borçoi AR, Ceccon LM, Berro LF et al (2013) Short-term social isolation induces depressive-like behaviour and reinstates the retrieval of an aversive task: mood-congruent memory in male mice? J Psychiatr Neurosci: JPN 38(4):259–268. https://doi.org/10.1503/jpn.120050

    Article  Google Scholar 

  29. Weiss JM (1997) Does decreased sucrose intake indicate loss of preference in CMS model? Psychopharmacology 134(4):368–370. https://doi.org/10.1007/s002130050472

    Article  PubMed  CAS  Google Scholar 

  30. Neis VB, Bettio LE, Moretti M, Rosa PB, Ribeiro CM, Freitas AE, Goncalves FM, Leal RB et al (2016) Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol Biochem Behav 150-151:108–114. https://doi.org/10.1016/j.pbb.2016.10.004

    Article  PubMed  CAS  Google Scholar 

  31. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110. https://doi.org/10.1159/000087097

    Article  PubMed  CAS  Google Scholar 

  32. Kaster MP, Rosa AO, Santos AR, Rodrigues AL (2005) Involvement of nitric oxide-cGMP pathway in the antidepressant-like effects of adenosine in the forced swimming test. Intern J Neuropsychopharmacol/Off Sci J Collegium Internationale Neuropsychopharmacologicum 8(4):601–606. https://doi.org/10.1017/S1461145705005316

    Article  CAS  Google Scholar 

  33. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370. https://doi.org/10.1007/BF00428203

    Article  PubMed  CAS  Google Scholar 

  34. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33. https://doi.org/10.1016/S0014-2999(03)01272-X

    Article  PubMed  CAS  Google Scholar 

  35. Porsolt R, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  37. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322. https://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  38. Kee N, Sivalingam S, Boonstra R, Wojtowicz J (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115(1):97–105. https://doi.org/10.1016/S0165-0270(02)00007-9

    Article  PubMed  CAS  Google Scholar 

  39. Couillard-Despres S, Winkler J, Uyanik G, Aigner L (2001) Molecular mechanisms of neuronal migration disorders, quo vadis? Curr Mol Med 1(6):677–688. https://doi.org/10.2174/1566524013363195

    Article  PubMed  CAS  Google Scholar 

  40. Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92(1):63–72. https://doi.org/10.1016/S0092-8674(00)80899-5

    Article  PubMed  CAS  Google Scholar 

  41. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21(1):1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x

    Article  PubMed  Google Scholar 

  42. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10. https://doi.org/10.1002/cne.10874

    Article  PubMed  CAS  Google Scholar 

  43. Paxinos G, Franklin KB (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, London

    Google Scholar 

  44. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  46. Kannangara TS, Bostrom CA, Ratzlaff A, Thompson L, Cater RM, Gil-Mohapel J, Christie BR (2014) Deletion of the NMDA receptor GluN2A subunit significantly decreases dendritic growth in maturing dentate granule neurons. PLoS One 9(8):e103155. https://doi.org/10.1371/journal.pone.0103155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  PubMed  CAS  Google Scholar 

  48. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130(2):391–399

    Article  PubMed  CAS  Google Scholar 

  49. Pouladi MA, Brillaud E, Xie Y, Conforti P, Graham RK, Ehrnhoefer DE, Franciosi S, Zhang W et al (2012) NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol Dis 48(3):282–289. https://doi.org/10.1016/j.nbd.2012.06.026

    Article  PubMed  CAS  Google Scholar 

  50. M’Barek KB, Pla P, Orvoen S, Benstaali C, Godin JD, Gardier AM, Saudou F, David DJ et al (2013) Huntingtin mediates anxiety/depression-related behaviors and hippocampal neurogenesis. J Neurosci 33(20):8608–8620. https://doi.org/10.1523/JNEUROSCI.5110-12.2013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ferrer I, Goutan E, Marın C, Rey M, Ribalta T (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866(1):257–261

    Article  PubMed  CAS  Google Scholar 

  52. Duan W, Guo Z, Jiang H, Ware M, Li X-J, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci 100(5):2911–2916. https://doi.org/10.1073/pnas.0536856100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Duan W, Peng Q, Masuda N, Ford E, Tryggestad E, Ladenheim B, Zhao M, Cadet JL et al (2008) Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol Dis 30(3):312–322. https://doi.org/10.1016/j.nbd.2008.01.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95(1):55–66. https://doi.org/10.1016/S0092-8674(00)81782-1

    Article  PubMed  CAS  Google Scholar 

  55. Bemelmans A-P, Horellou P, Pradier L, Brunet I, Colin P, Mallet J (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10(18):2987–2997. https://doi.org/10.1089/10430349950016393

    Article  PubMed  CAS  Google Scholar 

  56. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martín-Ibañez R, Munoz MT, Mengod G, Ernfors P et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24(35):7727–7739. https://doi.org/10.1523/JNEUROSCI.1197-04.2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9(5):682–688. https://doi.org/10.1016/j.ymthe.2004.02.016

    Article  PubMed  CAS  Google Scholar 

  58. Woo NH, Lu B (2006) Regulation of cortical interneurons by neurotrophins: from development to cognitive disorders. Neuroscientist 12(1):43–56. https://doi.org/10.1177/1073858405284360

    Article  PubMed  CAS  Google Scholar 

  59. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Mol Brain Res 136(1):29–37

    Article  PubMed  CAS  Google Scholar 

  60. Monteleone P, Serritella C, Martiadis V, Maj M (2008) Decreased levels of serum brain-derived neurotrophic factor in both depressed and euthymic patients with unipolar depression and in euthymic patients with bipolar I and II disorders. Bipolar Disord 10(1):95–100. https://doi.org/10.1111/j.1399-5618.2008.00459.x

    Article  PubMed  CAS  Google Scholar 

  61. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Taliaz D, Stall N, Dar D, Zangen A (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15(1):80–92. https://doi.org/10.1038/mp.2009.67

    Article  PubMed  CAS  Google Scholar 

  63. Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G, Riva MA (2006) Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 9(3):307–317

    Article  PubMed  CAS  Google Scholar 

  64. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. Washington, DC

    Google Scholar 

  65. Moreau J-L, Jenck F, Martin JR, Mortas P, Haefely W (1992) Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur Neuropsychopharmacol 2(1):43–49. https://doi.org/10.1016/0924-977X(92)90035-7

    Article  PubMed  CAS  Google Scholar 

  66. Moreau J-L, Scherschlicht R, Jenck F, Martin J (1995) Chronic mild stress-induced anhedonia model of depression: sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol 6(7):682–687

    Article  PubMed  Google Scholar 

  67. Vogel G, Neill D, Hagler M, Kors D (1990) A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev 14(1):85–91. https://doi.org/10.1016/S0149-7634(05)80164-2

    Article  PubMed  CAS  Google Scholar 

  68. Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57(3):261–267

    Article  PubMed  CAS  Google Scholar 

  69. Pothion S, Bizot J-C, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155(1):135–146. https://doi.org/10.1016/j.bbr.2004.04.008

    Article  PubMed  Google Scholar 

  70. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4):571–625. https://doi.org/10.1016/j.neubiorev.2005.03.009

    Article  PubMed  CAS  Google Scholar 

  71. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9(4):326–357. https://doi.org/10.1038/sj.mp.4001457

    Article  PubMed  CAS  Google Scholar 

  72. Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol Brain Res 36(2):280–286. https://doi.org/10.1016/0169-328X(95)00250-V

    Article  PubMed  CAS  Google Scholar 

  73. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37(12):1553–1561. https://doi.org/10.1016/S0028-3908(98)00141-5

    Article  PubMed  CAS  Google Scholar 

  74. Giampa C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8(5):e64037. https://doi.org/10.1371/journal.pone.0064037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gil JM, Leist M, Popovic N, Brundin P, Petersén Å (2004) Asialoerythropoetin is not effective in the R6/2 line of Huntington’s disease mice. BMC Neurosci 5(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lazic SE, Grote H, Armstrong RJ, Blakemore C, Hannan AJ, van Dellen A, Barker RA (2004) Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport 15(5):811–813

    Article  PubMed  Google Scholar 

  77. Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, Phillips W, Barker RA (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur J Neurosci 23(7):1829–1838. https://doi.org/10.1111/j.1460-9568.2006.04715.x

    Article  PubMed  Google Scholar 

  78. Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ et al (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-β signaling in an animal model of huntington disease. J Neuropathol Exp Neurol 69(7):717–728. https://doi.org/10.1097/NEN.0b013e3181e4f733

    Article  PubMed  Google Scholar 

  79. Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR (2011) Neurogenesis in Huntington’s disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 1406:84–105. https://doi.org/10.1016/j.brainres.2011.06.040

    Article  PubMed  CAS  Google Scholar 

  80. Gil JM, Mohapel P, Araújo IM, Popovic N, Li J-Y, Brundin P, Petersén Å (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20(3):744–751

    Article  PubMed  CAS  Google Scholar 

  81. Phillips W, Morton AJ, Barker RA (2005) Abnormalities of neurogenesis in the R6/2 mouse model of Huntington’s disease are attributable to the in vivo microenvironment. J Neurosci 25(50):11564–11576. https://doi.org/10.1523/JNEUROSCI.3796-05.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Manev R, Uz T, Manev H (2001) Fluoxetine increases the content of neurotrophic protein S100β in the rat hippocampus. Eur J Pharmacol 420(2):R1–R2. https://doi.org/10.1016/S0014-2999(01)00989-X

    Article  PubMed  CAS  Google Scholar 

  84. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann JJ, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34(11):2376–2389. https://doi.org/10.1038/npp.2009.75

    Article  PubMed  CAS  Google Scholar 

  85. Marlatt GA, Witkiewitz K (2010) Update on harm-reduction policy and intervention research. Annu Rev Clin Psychol 6(1):591–606. https://doi.org/10.1146/annurev.clinpsy.121208.131438

    Article  PubMed  Google Scholar 

  86. Barde Y-A (1989) Trophic factors and neuronal survival. Neuron 2(6):1525–1534. https://doi.org/10.1016/0896-6273(89)90040-8

    Article  PubMed  CAS  Google Scholar 

  87. Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science (New York, NY) 263(5153):1618–1624

    Article  CAS  Google Scholar 

  88. Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4(1):58–64. https://doi.org/10.1016/j.coph.2003.10.004

    Article  PubMed  CAS  Google Scholar 

  89. Zigova T, Pencea V, Wiegand SJ, Luskin MB (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11(4):234–245. https://doi.org/10.1006/mcne.1998.0684

    Article  PubMed  CAS  Google Scholar 

  90. Henry RA, Hughes SM, Connor B (2007) AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 25(12):3513–3525. https://doi.org/10.1111/j.1460-9568.2007.05625.x

    Article  PubMed  Google Scholar 

  91. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356. https://doi.org/10.1016/j.expneurol.2004.11.016

    Article  PubMed  CAS  Google Scholar 

  92. Bath KG, Akins MR, Lee FS (2012) BDNF control of adult SVZ neurogenesis. Dev Psychobiol 54(6):578–589. https://doi.org/10.1002/dev.20546

    Article  PubMed  CAS  Google Scholar 

  93. Chu-LaGraff Q, Kang X, Messer A (2001) Expression of the Huntington’s disease transgene in neural stem cell cultures from R6/2 transgenic mice. Brain Res Bull 56(3–4):307–312. https://doi.org/10.1016/S0361-9230(01)00598-6

    Article  PubMed  CAS  Google Scholar 

  94. Walker AG, Ummel JR, Rebec GV (2011) Reduced expression of conditioned fear in the R6/2 mouse model of Huntington’s disease is related to abnormal activity in prelimbic cortex. Neurobiol Dis 43(2):379–387. https://doi.org/10.1016/j.nbd.2011.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  95. Molero AE, Gokhan S, Gonzalez S, Feig JL, Alexandre LC, Mehler MF (2009) Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease. Proc Natl Acad Sci 106(51):21900–21905. https://doi.org/10.1073/pnas.0912171106

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J (2014) YAC128 Huntington’s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res 1581:117–128. https://doi.org/10.1016/j.brainres.2014.06.011

    Article  PubMed  CAS  Google Scholar 

  97. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118. https://doi.org/10.1007/s00429-008-0189-x

    Article  PubMed  PubMed Central  Google Scholar 

  98. Orvoen S, Pla P, Gardier AM, Saudou F, David DJ (2012) Huntington’s disease knock-in male mice show specific anxiety-like behaviour and altered neuronal maturation. Neurosci Lett 507(2):127–132

    Article  PubMed  CAS  Google Scholar 

  99. Spires TL, Grote HE, Garry S, Cordery PM, Van Dellen A, Blakemore C, Hannan AJ (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19(10):2799–2807. https://doi.org/10.1111/j.0953-816X.2004.03374.x

    Article  PubMed  Google Scholar 

  100. Nithianantharajah J, Barkus C, Vijiaratnam N, Clement O, Hannan AJ (2009) Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington’s disease transgenic mice. Am J Geriatr Psychiatry 17(3):196–209

    Article  PubMed  Google Scholar 

  101. Heck N, Betuing S, Vanhoutte P, Caboche J (2012) A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington’s disease. Brain Struct Funct 217(2):421–434. https://doi.org/10.1007/s00429-011-0340-y

    Article  PubMed  Google Scholar 

  102. Murmu RP, Li W, Holtmaat A, Li JY (2013) Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington’s disease. J Neurosci 33(32):12997–13009. https://doi.org/10.1523/JNEUROSCI.5284-12.2013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Bulley SJ, Drew CJ, Morton AJ (2012) Direct visualisation of abnormal dendritic spine morphology in the hippocampus of the R6/2 transgenic mouse model of Huntington’s disease. J Huntingtons Dis 1(2):267–273. https://doi.org/10.3233/JHD-120024

    Article  PubMed  Google Scholar 

  104. Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L (2008) The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods 169(1):182–190. https://doi.org/10.1016/j.jneumeth.2007.12.006

    Article  PubMed  CAS  Google Scholar 

  105. Chapleau CA, Larimore JL, Theibert A, Pozzo-Miller L (2009) Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 1(3):185–196. https://doi.org/10.1007/s11689-009-9027-6

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kellner Y, Godecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M (2014) The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front Synaptic Neurosci 6(5). https://doi.org/10.3389/fnsyn.2014.00005

  107. Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114(3):795–805. https://doi.org/10.1016/S0306-4522(02)00301-9

    Article  PubMed  CAS  Google Scholar 

  108. Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 100(5):2911–2916. https://doi.org/10.1073/pnas.0536856100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Vanzella C, Neves JD, Vizuete AF, Aristimunha D, Kolling J, Longoni A, Gonçalves CAS, Wyse ATS et al (2017) Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav Brain Res 334:78–85. https://doi.org/10.1016/j.bbr.2017.07.034

    Article  PubMed  CAS  Google Scholar 

  110. Yagishita K, Suzuki R, Mizuno S, Katoh-Semba R, Sadakata T, Sano Y, Furuichi T, Shinoda Y (2017) CAPS2 deficiency affects environmental enrichment-induced adult neurogenesis and differentiation/survival of newborn neurons in the hippocampal dentate gyrus. Neurosci Lett 661:121–125. https://doi.org/10.1016/j.neulet.2017.09.047

    Article  PubMed  CAS  Google Scholar 

  111. Reick C, Ellrichmann G, Tsai T, Lee DH, Wiese S, Gold R, Saft C, Linker RA (2016) Expression of brain-derived neurotrophic factor in astrocytes - beneficial effects of glatiramer acetate in the R6/2 and YAC128 mouse models of Huntington’s disease. Exp Neurol 285(Pt A):12–23. https://doi.org/10.1016/j.expneurol.2016.08.012

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

A.R.C., J.G.M., and A.L.S.R. acknowledge funding from the Science Without Borders funding program [Programa Ciência Sem Fronteiras/ Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Project #403120/2012-8] of the Brazilian Federal Government. P.S.B. acknowledges funding from CNPq Project # 480176/2013-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Brocardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonsêca, V.S., da Silva Colla, A.R., de Paula Nascimento-Castro, C. et al. Brain-Derived Neurotrophic Factor Prevents Depressive-Like Behaviors in Early-Symptomatic YAC128 Huntington’s Disease Mice. Mol Neurobiol 55, 7201–7215 (2018). https://doi.org/10.1007/s12035-018-0890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0890-6

Keywords

Navigation