Skip to main content
Log in

Nanomechanical properties of cholesterol-rich domains in mica-supported unsaturated lipid bilayer: an atomic force microscopy study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The cell membrane undergoes various changes to modify its composition and mechanical properties to control the functioning of cellular mechanisms, in which cholesterol is highly involved. We have investigated the formation of cholesterol-rich nano-domains in pure 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solid-supported lipid bilayer (SLB) at room temperature. The mechanical properties of the lipid bilayer in the presence of 0 to 40 mol% of cholesterol have been explored by using Peak-Force Quantitative Nano-Mechanical Atomic Force Microscopy. Cholesterol-rich domains with different mechanical strengths are distinctly observed at 5% cholesterol in SLB of DOPC-cholesterol. The cholesterol-rich domains with increased height are observed up to 25% cholesterol insertion within the bilayer. Further increase of cholesterol concentration leads to shrinkage of bilayer height and moderate rise of rigidity modulus. We believe that the reduction of bilayer height is due to the decoupling of the two leaflets within the membrane at high cholesterol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Feigenson G W 2007 Annu. Rev. Biophys. Biomol. Struct. 36 63

    Article  CAS  Google Scholar 

  2. Meer G V, Voelker D R and Feigenson G W 2008 Nat. Rev. Mol. Cell Biol. 9 112

    Article  Google Scholar 

  3. Groves J T and Kuriyan J 2010 Nat. Struct. Mol. Biol. 17 659

    Article  CAS  Google Scholar 

  4. Seeliger J, Erwin N, Rosin C, Kahse M, Weisea K and Winter R 2015 Phys. Chem. Chem. Phys. 17 7507

    Article  CAS  Google Scholar 

  5. Meyer FJ-Md, Rodgers J M, Willems T F and Smit B 2010 Biophys. J 99 3629

    Article  Google Scholar 

  6. Mouritsen O G and Zuckermann M J 2004 Lipids 39 1101

    Article  CAS  Google Scholar 

  7. Cornelius F 2001 Biochemistry 40 8842

    Article  CAS  Google Scholar 

  8. Chiantia S, Ries J and Schwille P 2009 Biochim. Biophys. Acta 1788 225

    Article  CAS  Google Scholar 

  9. Anderton C R, Lou K, Weber P K, Hutcheon I D and Kraft M L 2011 Biochim. Biophys. Acta 1808 307

    Article  CAS  Google Scholar 

  10. Karmakar S, Raghunathan V A and Mayor S 2005 J. Phys.: Condens. Matter 17 S1177

    CAS  Google Scholar 

  11. Chakraborty S, Doktorova M, Molugu T R, Heberle F A, Scott H L, Dzikovski B et al 2020 Proc. Natl. Acad. Sci. USA 117 21896

    Article  CAS  Google Scholar 

  12. Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M and Diem M 2008 Methods Cell Biol. 89 275

    Article  Google Scholar 

  13. Connell S D and Smith D A 2006 Mol. Membr. Biol. 23 17

    Article  CAS  Google Scholar 

  14. Quaroni L, Bandopadhyay K, Mach M, Wydro P and Zapotoczny S 2021 https://arxiv.org/abs/210202188

  15. Connell S D, Heath G R and Goodchild J A 2019 Mol. Biol. 1886 29

    CAS  Google Scholar 

  16. Sullan R M A, Li J K, Hao C, Walker G C and Zou S 2010 Biophys. J. 99 507

    Article  CAS  Google Scholar 

  17. Crane J M and Tamm L K 2004 Biophys. J 86 2965

    Article  CAS  Google Scholar 

  18. Yang S-T, Kreutzberger A J B, Lee J, Kiessling V and Tamm L K 2016 Chem. Phys. Lipids 199 136

    Article  CAS  Google Scholar 

  19. Javanainen M, Martinez-Seara H and Vattulainen I 2017 Sci. Rep. 7 1143

    Article  Google Scholar 

  20. Sarangi N K, Ayappa K G and Basu J K 2017 Sci. Rep. 7 11173

    Article  Google Scholar 

  21. Pan J, Tristram-Nagle S and Nagle J F 2009 Phys. Rev. E 80 021931

    Article  Google Scholar 

  22. Al-Rekabi Z and Contera S 2018 Proc. Natl. Acad. Sci. USA 115 2658

    Article  CAS  Google Scholar 

  23. Lyu D, Zhang L and Zhang Y 2020 RSC Adv. 10 11088

    Article  CAS  Google Scholar 

  24. Martinez-Seara H, Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M and Reigada R 2008 Biophys. J 95 3295

    Article  CAS  Google Scholar 

  25. Redondo-Morata L, Losada-Pérez P and Giannotti M I 2020 Curr. Top. Membr. 86 1

    Article  CAS  Google Scholar 

  26. Ermilova I and Lyubartsev A P 2019 Soft Matter 15 78

    Article  CAS  Google Scholar 

  27. Adhyapak P R, Panchal S V, Venkata A and Murthy R 2018 Biochim. Biophys. Acta - Biomembr. 1860 953

    Article  CAS  Google Scholar 

  28. Domingos E, Guilherme and Antonio S 2020 J. Mol. Liq. 315 113698

  29. Parker A, Miles K, Cheng K H and Huang J 2004 Biophys. J 86 1532

    Article  CAS  Google Scholar 

  30. Siontorou C G, Nikoleli G-P, Nikolelis D P and Karapetis S K 2017 Membranes (Basel) 7 38

    Article  Google Scholar 

  31. An H, Nussio M R, Huson M G, Voelcker N H and Shapter J G 2010 Biophys. J 99 834

    Article  CAS  Google Scholar 

  32. Gracia R S, Bezlyepkina N, Knorr R L, Lipowsky R and Dimova R 2010 Soft Matter 6 1472

    Article  CAS  Google Scholar 

  33. Hope M J, Bally M B, Webb G and Cullis P R 1985 Biochi. Biophys. Acta 812 55

    Article  CAS  Google Scholar 

  34. Wang Y, Wang H and Bi S 2014 AIP Adv. 4 057130

    Article  Google Scholar 

  35. Bhattacharjee S, Lavanyakumar D, Naik V, Mondal S, Bhattacharyya S R and Karmakar R 2018 Thin Solid Films 645 265

    Article  CAS  Google Scholar 

  36. Derjaguin B V, Muller V M and Toporov Y P 1975 J. Colloid Interface Sci. 53 314

    Article  CAS  Google Scholar 

  37. Richter R, Berat R and Brisson A R 2006 Langmuir 22 3497

    Article  CAS  Google Scholar 

  38. Armstrong C L, Marquardt D, Dies H, Kučerka N, Yamani Z, Harroun T A et al 2013 Plos One 8 e66162

    Article  CAS  Google Scholar 

  39. Kawakami L M, Yoon B K, Jackman J A, Knoll W, Weiss P S and Cho N-J 2017 Langmuir 33 14756

    Article  CAS  Google Scholar 

  40. Olsen B N, Bielska A A, Lee T, Daily M D, Covey D F, Schlesinger P H et al 2013 Biophys. J. 105 1838

    Article  CAS  Google Scholar 

  41. Alwarawrah M, Dai J and Huang J 2010 J. Phys. Chem. B 114 7516

    Article  CAS  Google Scholar 

  42. Aghaaminiha M, Farnoud A M and Sharma S 2021 Soft Matter 17 2742

    Article  CAS  Google Scholar 

  43. Finegold L X 1993 Cholesterol in membrane modes (Boca Raton: CRC Press)

    Google Scholar 

  44. Tsai W C and Feigenson G W 2019 Biochim. Biophys. Acta Biomembr. 1861 478

    Article  CAS  Google Scholar 

  45. Tero R 2012 Materials 5 2658

    Article  CAS  Google Scholar 

  46. Hung W-C, Lee M-T, Chen F-Y and Huang H W 2007 Biophys. J. 92 3960

    Article  CAS  Google Scholar 

  47. Jurak M and Chibowskia E 2015 RSC Adv. 5 66628

    Article  CAS  Google Scholar 

  48. Ikonen E 2008 Nat. Rev. Mol. Cell Biol. 9 125

    Article  CAS  Google Scholar 

  49. Mills T T, Toombes G E S, Tristram-Nagle S, Smilgies D-M, Feigenson G W and Nagle J F 2008 Biophys. J. 95 669

    Article  CAS  Google Scholar 

  50. Sankaram M B and Thompson T E 1991 Proc. Natl. Acad. Sci. USA 88 8686

    Article  CAS  Google Scholar 

  51. Maftouni N, Amininasab M, Ejtehadi M R, Kowsari F and Dastvan R 2013 J. Chem. Phys. 138 065101

    Article  Google Scholar 

  52. Meyer F and Smit B 2009 Proc. Natl. Acad. Sci. UA 106 3654

    Article  Google Scholar 

  53. Bruckner R J, Mansy S S, Ricardo A, Mahadevan L and Szostak J 2009 Biophys. J. 97 3113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the DBT funded Research Project (BT/PR8475/BRB/10/1248/2013). We are grateful to VECC Kolkata, DAE, Government of India, for providing AFM Facility to carry out the research. We would like to acknowledge Pabitra Maity and Animesh Halder for their help during vesicle preparation and dynamic light-scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanat Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Karmakar, P. & Karmakar, S. Nanomechanical properties of cholesterol-rich domains in mica-supported unsaturated lipid bilayer: an atomic force microscopy study. Bull Mater Sci 46, 152 (2023). https://doi.org/10.1007/s12034-023-02986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02986-4

Keywords

Navigation