Skip to main content
Log in

Preparation of SiCN ceramic fibres via UV irradiation curing polysilazane

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The amorphous polymer-derived SiCN ceramic fibres were fabricated successfully with homemade polysilazane (PSZ) through a series of processes, including melt-spinning, UV curing and pyrolyzing at 1100°C in the N2 atmosphere. The effects of UV irradiation time on the composition, microstructure and ceramic yields of PSZ fibres were investigated by relevant characterizations, including gel permeation chromatography, Fourier transforms infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermal gravimetric analysis, respectively. The UV cross-linking reaction occurred on the surface layer of the PSZ fibres, where the UV radiations were expected to play a critical role in accelerating the cleavage of Si–H, N–H and C–H bonds to form the cross-linked networks of Si–O–Si, Si–N–Si and Si–C–Si. The PSZ fibres remained fibrous on UV irradiation for up to 8 h. The PSZ fibres irradiated for 20 h revealed an optimum ceramic yield value of 80.6%, which is higher than the unirradiated by 40.3%. The reported UV irradiation provides a novel curing method for the fabrication of SiCN ceramic fibres using PSZ fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dutta S 2001 Bull. Mater. Sci. 24 117

    Article  CAS  Google Scholar 

  2. Kumar S, Bablu M, Janghela S, Misra M, Mishra R, Ranjan A et al 2018 Bull. Mater. Sci. 41 1

    Article  Google Scholar 

  3. Ichikawa H 2016 Annu. Rev. Mater. Res. 46 335

    Article  CAS  Google Scholar 

  4. Hu X, Shao C, Wang J and Wang H 2017 J. Mater. Sci. 52 7555

    Article  CAS  Google Scholar 

  5. Flores O, Bordia R K, Nestler D, Krenkel W and Motz G 2014 Adv. Eng. Mater. 16 621

    Article  CAS  Google Scholar 

  6. Viard A, Fonblanc D, Lopez-Ferber D, Schmidt M, Lale A, Durif C et al 2018 Adv. Eng. Mater. 20 1800360

    Article  Google Scholar 

  7. Colombo P, Mera G, Riedel R and Sorarù G D 2010 J. Am. Ceram. Soc. 93 1805

    CAS  Google Scholar 

  8. Liu Y, Yang W, He X and Hou H 2019 Ceram. Int. 45 8640

    Article  CAS  Google Scholar 

  9. Bernard S, Weinmann M, Gerstel P, Miele P and Aldinger F 2005 J. Mater. Chem. 15 289

    Article  CAS  Google Scholar 

  10. Gottardo L, Bernard S, Gervais C, Inzenhofer K, Motz G, Weinmann M et al 2012 J. Mater. Chem. 22 7739

    Article  CAS  Google Scholar 

  11. Miele P, Bernard S, Cornu D and Toury B 2007 Soft Mater. 4 249

    Article  Google Scholar 

  12. Murthy V 1993 Bull. Mater. Sci. 16 87

    Article  CAS  Google Scholar 

  13. Xu C, Liu C, Zheng Z, Li Y, Zhang Z, Yang S et al 2001 J. Appl. Polym. Sci. 82 2827

    Article  CAS  Google Scholar 

  14. Drechsel C, Peterlik H, Gierl-Mayer C, Stöger-Pollach M and Konegger T 2021 J. Eur. Ceram. Soc. 41 3292

    Article  CAS  Google Scholar 

  15. Zhang Q, Yang Z, Jia D, Chen Q and Zhou Y 2016 New J. Chem. 40 7034

    Article  CAS  Google Scholar 

  16. Ionescu E, Papendorf B, Kleebe H-J, Breitzke H, Nonnenmacher K, Buntkowsky G et al 2012 J. Eur. Ceram. Soc. 32 1873

    Article  CAS  Google Scholar 

  17. Seifollahi Bazarjani M, Kleebe H-J, Müller M M, Fasel C, Baghaie Yazdi M, Gurlo A et al 2011 Chem. Mater. 23 4112

    Article  Google Scholar 

  18. Smith S A, Williams B P and Joo Y L 2017 J. Membr. Sci. 526 315

    Article  CAS  Google Scholar 

  19. Zhou C, Yang L, Geng H, Zheng Q, Min H, Yu Z et al 2012 Ceram. Int. 38 6815

    Article  CAS  Google Scholar 

  20. Konegger T, Patidar R and Bordia R K 2015 J. Eur. Ceram. Soc. 35 2679

    Article  CAS  Google Scholar 

  21. Bakumov V, Gueinzius K, Hermann C, Schwarz M and Kroke E 2007 J. Eur. Ceram. Soc. 27 3287

    Article  CAS  Google Scholar 

  22. Barroso G, Döring M, Horcher A, Kienzle A and Motz G 2020 Adv. Mater. Interfaces 7 1901952

    Article  CAS  Google Scholar 

  23. Li W, Wang J, Xie Z, Wang H and Tang Y 2012 Mater. Lett. 78 1

    Article  CAS  Google Scholar 

  24. Guo X, Cheng Y, Fan Z, Feng Z, He L, Liu R et al 2016 Carbon 109 444

    Article  CAS  Google Scholar 

  25. Hong J, Cho K-Y, Shin D-G, Kim J-I and Riu D-H 2015 J. Appl. Polym. Sci. 132 42687

    Article  Google Scholar 

  26. Zhen X, Pei X, Wang Y, Zhong X, He L, Chai Z et al 2019 J. Eur. Ceram. Soc. 39 2028

    Article  CAS  Google Scholar 

  27. Long X, Shao C, Wang H and Wang J 2016 Ceram. Int. 42 19206

    Article  CAS  Google Scholar 

  28. Su Z, Zhang L, Li Y, Li S, Chen L and Riedel R 2015 J. Am. Ceram. Soc. 98 2014

    Article  CAS  Google Scholar 

  29. Luo Y, Zhen X, Pei X, Huang Z, He L and Huang Q 2019 Adv. Appl. Ceram. 119 166

    Article  Google Scholar 

  30. He G, Zhang B, Wang B, Xu D, Li S, Yu Z et al 2018 J. Eur. Ceram. Soc. 38 1079

    Article  CAS  Google Scholar 

  31. Joo Y J, Khishigbayar K-E, Cho K Y and Kim C J 2018 Fiber Polym. 19 1806

    Article  CAS  Google Scholar 

  32. Long X, Zhang S, Shao C, Wang B and Wang Y 2020 Front. Mater. 7 563891

    Article  Google Scholar 

  33. Li H, Zhang L, Cheng L, Kang H and Wang Y 2009 J. Mater. Sci. 44 970

    Article  CAS  Google Scholar 

  34. Chen C C, Peng K T, Chiu T A, Chien H J and Matsuo H 2012 J. Photopolym. Sci. Tec. 25 427

    Article  CAS  Google Scholar 

  35. Liew L-A, Liu Y, Luo R, Cross T, An L, Bright V M et al 2002 Sens. Actuators A-Phys. 95 120

    Article  CAS  Google Scholar 

  36. Long X, Shao C, Wang H and Wang J 2015 Dalton. T. 44 15463

    Article  CAS  Google Scholar 

  37. Ji X, Shao C, Wang H, Wang J, Cheng J, Long X et al 2017 Ceram. Int. 43 7469

    Article  CAS  Google Scholar 

  38. Mainzer B, Lin C, Jemmali R, Frieß M, Riedel R and Koch D 2019 J. Eur. Ceram. Soc. 39 212

    Article  CAS  Google Scholar 

  39. Prager L, Wennrich L, Heller R, Knolle W, Naumov S, Prager A et al 2009 Chemistry 15 675

    Article  CAS  Google Scholar 

  40. Song Y, Zhao Y, Feng C and Lu Y 1994 J. Mater. Sci. 29 5745

    Article  CAS  Google Scholar 

  41. Ji X, Shao C, Wang H, Cheng J and Li H 2017 Ceram. Int. 43 11218

    Article  CAS  Google Scholar 

  42. Ji X, Gao H, Zhang S, Jia Y, Ji M-S, Zhou X et al 2021 J. Eur. Ceram. Soc. 41 5016

    Article  CAS  Google Scholar 

  43. Chen J, Li H, Kao K, Lin W, Xiong Y and Huang Z 2021 Nano Select. 3 834

    Article  Google Scholar 

  44. Li H, Chen J, Bao Z, Xiong Y and Lin W 2022 J. Text. Res. 43 48 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of the People’s Republic of China (No. 51872262) and the Natural Science Foundation of Zhejiang Province, China (No. LZ23E020003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Li, X., Bao, Z. et al. Preparation of SiCN ceramic fibres via UV irradiation curing polysilazane. Bull Mater Sci 46, 111 (2023). https://doi.org/10.1007/s12034-023-02958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02958-8

Keywords

Navigation