Skip to main content
Log in

Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol–gel process

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Continuous PZSO–PVP gel fibers have been drawn from polyzirconosiloxane (PZSO) solution consisting of two-component silicon alkoxides (tetraethoxysilane and dimethyldiethoxylsilane) and ZrOCl2, utilizing polyvinyl pyrrolidone (PVP) as spinning reagent and ethanol as solvent. The PVP addition significantly improves the solution spinnability and stability by adjusting the solution viscosity, the coordination with Zr atom, and the steric hindrance effect. The PZSO–PVP fibers are composed of smooth dense surface and elliptical-shaped cross section due to nonhomogeneous shrinkage during gelation and drying. Fourier transform infrared and X-ray photoelectron spectroscopy analysis on the PZSO–PVP fibers suggest a structure of mixed SiO4 and SiC2O2 units with incorporated Zr in the form of Zr–O–Zr and Zr–O–Si. SiZrOC ceramic fibers are obtained through subsequent drying and pyrolysis treatment, with good thermal stability up to 1500 °C. The fibers are of mixed silicon oxycarbide phase embraced with ZrO2 phase and free carbon but no SiC phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baldus P, Jansen M, Sporn D (1999) Ceramic fibers for matrix composites in high-temperature engine applications. Science 285(5428):699–703

    Article  Google Scholar 

  2. Okamura K, Shimoo T, Suzuya K, Suzuki K (2006) SiC-based ceramic fibers prepared via organic-to-inorganic conversion process—a review. J Ceram Soc Jpn 114:6445–6454

    Article  Google Scholar 

  3. Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837

    Google Scholar 

  4. Riedel R, Mera G, Hauser R, Klonczynski A (2006) Silicon-based polymer-derived ceramics: synthesis properties and applications—a review. J Ceram Soc Jpn 114:425–444

    Article  Google Scholar 

  5. Ionescu E, Papendorf B, Kleebe H-J, Riedel R (2010) Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. Part II: stability toward decomposition and microstructure evolution at T ≫ 1000 °C. J Am Ceram Soc 93(6):1783–1789

    Google Scholar 

  6. Sujith R, Kousaalya AB, Kumar R (2011) Coarsening induced phase transformation of hafnia in polymer-derived Si–Hf–C–N–O ceramics. J Am Ceram Soc 94(9):2788–2791

    Article  Google Scholar 

  7. Tamayo A, Peña-Alonso R, Rubio F, Rubio J, Oteo JL (2012) Synthesis and characterization of boron silicon oxycarbide glass fibers. J Non Cryst Solids 358:155–162

    Article  Google Scholar 

  8. Nguyen VL, Proust V, Quievryn C, Bernard S, Miele P, Soraru GD (2014) Processing, mechanical characterization, and alkali resistance of siliconboronoxycarbide (SiBOC) glass fibers. J Am Ceram Soc 97(10):3143–3149

    Article  Google Scholar 

  9. Xie S, Wang YD, Lei YP, Wang B, Wu N, Gou YZ, Fang D (2015) A simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance. RSC Adv 5(80):64902–64908

    Article  Google Scholar 

  10. Yu YX, Guo YD, Cheng X, Zhang Y (2009) Preparation of TiO2/SiO2 composite fiber by thermal decomposition of polycarbosilane–tetrabutyl titanate hybrid precursor. J Mater Chem 19:5637–5642

    Article  Google Scholar 

  11. Tang XY, Yu YX, Yang DX (2010) SiO2/TiO2 fibers from titanium-modified polycarbosilane. J Mater Sci 45(10):2670–2674. doi:10.1007/s10853-010-4247-4

    Article  Google Scholar 

  12. Yan X, Su D, Duan HZ, Zhang FR (2015) Preparation of SiOC/HfO2 fibers from silicon alkoxides and tetrachloride hafnium by a sol–gel process. Mater Lett 148:196–199

    Article  Google Scholar 

  13. Xu Y, Su D, Feng HJ, Yan X, Liu N (2015) Continuous sol–gel derived SiOC/HfO2 fibers with high-strength. RSC Adv 5:35026–35032

    Article  Google Scholar 

  14. Zaheer M, Schmalz T, Motz G, Kempe R (2012) Polymer derived non-oxide ceramics modified with late transition metals. Chem Soc Rev 41:5102–5116

    Article  Google Scholar 

  15. Ionescu E, Kleebe H-J, Riedel R (2012) Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem Soc Rev 41:5032–5052

    Article  Google Scholar 

  16. Yamaoka H, Ishikawa T, Kumagawa K (1999) Excellent heat resistance of Si–Zr–C–O fibre. J Mater Sci 34:1333–1339. doi:10.1023/A:1004506300754

    Article  Google Scholar 

  17. Shimoo T, Morisada Y, Okamura K (2002) Oxidation behavior of Si–M–C–O fibers under wide range of oxygen partial pressures. J Mater Sci 37:4361–4368. doi:10.1023/A:1020608704120

    Article  Google Scholar 

  18. Wang YD, Han C, Zheng DC, Lei YP (2014) Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. J Mater Chem A 2(25):9607–9612

    Article  Google Scholar 

  19. Saha A, Shah SR, Raj R (2003) Amorphous silicon carbonitride fibers drawn from alkoxide modified Ceraset™. J Am Ceram Soc 86(8):1443–1445

    Article  Google Scholar 

  20. Saha A, Shah SR, Raj R (2004) Oxidation behavior of SiCN–ZrO2 fiber prepared from alkoxide-modified silazane. J Am Ceram Soc 87(8):1556–1558

    Article  Google Scholar 

  21. Kamiya K, Sakka S, Tatemichi Y (1980) Preparation of glass fibres of the ZrO2–SiO2 and Na2O–ZrO2–SiO2 systems from metal alkoxides and their resistance to alkaline solution. J Mater Sci 15:1765–1771. doi:10.1007/BF00550596

    Article  Google Scholar 

  22. Shin DY, Han SM (1994) Spinnability and rheological properties of sols derived from Si(OC2H5)4 and Zr(O-nC3H7)4 solutions. J Sol Gel Sci Technol 1:267–273

    Article  Google Scholar 

  23. Hasegawa I, Fukuda Y, Kajiwara M (1999) Inorganic–organic hydrid route to synthesis of ZrC and Si–Zr–C fibres. Ceram Int 25:523–527

    Article  Google Scholar 

  24. Ionescu E, Linck C, Fasel C, Muller M, Kleebe HJ, Riedel R (2010) Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93:241–250

    Article  Google Scholar 

  25. Dire´ S, Ceccato R, Gialanella S, Babonneau F (1999) Thermal evolution and crystallisation of polydimethylsiloxane-zirconia nanocomposites prepared by the sol–gel method. J Eur Ceram Soc 19(16):2849–2858

    Article  Google Scholar 

  26. Shah SR, Raj R (2007) Multilayer design and evaluation of a high temperature environmental barrier coating for si-based ceramics. J Am Ceram Soc 90(2):516–522

    Article  Google Scholar 

  27. Ruan DS, Li YL, Wang L, Su D, Hou F (2010) Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol–gel process. J Sol Gel Sci Technol 56:184–190

    Article  Google Scholar 

  28. Zhang YB, Ding YP, Gao JQ, Yang JF (2009) Mullite fibres prepared by sol-gel method using polyvinyl butyyral. J Eur Ceram Soc 29:1101–1107

    Article  Google Scholar 

  29. Jing CB, Xu XG, Hou JX (2008) Synthesis of sub-micro-sized solid alpha alumina fibers with smooth surfaces by sol–gel method. J Sol Gel Sci Technol 45:109–113

    Article  Google Scholar 

  30. Matsuzaki K, Arai D, Taneda N, Mukaiyama T, Ikemura M (1989) Continuous silica glass fiber produced by sol–gel process. J Non Cryst Solids 112:437–441

    Article  Google Scholar 

  31. Renlund GM, Prochazka S, Doremus RH (1991) Silicon oxycarbide glasses: part I. Preparation and chemistry, part II. Structure and properties. J Mater Res 6(12):2716–2734

    Article  Google Scholar 

  32. Ionescu E, Papendorf B, Kleebe H-J, Poli F, Muller K, Riedel R (2010) Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. Part I: phase and microstructure evolution during the ceramization process. J Am Ceram Soc 93(6):1774–1782

    Google Scholar 

  33. Soraru GD, Dandrea G, Glisenti A (1996) XPS characterization of gel-derived silicon oxycarbide glasses. Mater Lett 27(1–2):1–5

    Article  Google Scholar 

  34. Karakuscu A, Guider R, Pavesi L, Soraru` GD (2009) White luminescence from sol–gel-derived sioc thin films. J Am Ceram Soc 92(12):2969–2974

    Article  Google Scholar 

  35. Barreca D, Battiston GA, Gerbasi R, Tondello E, Zanella P (2000) Zirconium dioxide thin films characterized by XPS. Surf Sci Spectra 7:303

    Article  Google Scholar 

  36. Brenier R, Mugnier J, Mirica E (1999) XPS study of amorphous zirconium oxide films prepared by sol–gel. Appl Surf Sci 143(1–4):85–91

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding supports from National Natural Science Foundation of China (Grant No.: 51202157), the Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.: 14JCQNJC02800), and the Independent Innovation Foundation of Tianjin University (Grant No.: 2013XQ-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, D., Yan, X., Liu, N. et al. Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol–gel process. J Mater Sci 51, 1418–1427 (2016). https://doi.org/10.1007/s10853-015-9461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9461-7

Keywords

Navigation