Skip to main content
Log in

Target phase-induced compositional control in liquid-phase pulsed laser ablation produced titanium ferrite nanomaterials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titanium ferrite nanoparticles (NPs) are synthesized using liquid-phase pulsed laser ablation (LP-PLA) technique with two different lines of approaches for targets: the first target is the pellet made from the mixture of oxides of iron and titanium, while the second target is iron and titanium metal rods. In the second approach of metal rods, the titanium rod was first ablated in double-distilled water and then, the use of obtained colloidal solution of NPs as a medium for the ablation of iron rod. The titanium ferrite nanomaterials produced from these two types of targets are characterized using X-ray diffraction (XRD), ultraviolet–visible absorption spectroscopy (UV–Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. XRD measurements show multiphase structure for as-produced titanium ferrite NPs. The structural, compositional, optical, bonding nature and magnetic properties of nanomaterials produced from two different targets under same experimental conditions are systematically studied. Comparatively higher yield, larger average particle size and smaller saturation magnetism are observed for nanomaterials produced from ablation of interface of metallic targets over the pellet made from the mixture of corresponding metal oxide powders. ATR-FTIR and Raman studies demonstrate synthesis of titanium–iron-oxide phase of titanium ferrite NPs. The results of present research demonstrate collision and intermixing of plasmas from two different species and can be used to produce ferrite NPs of other metals.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Singh S C, Li H, Yao C, Zhan Z, Yu W, Yu Z et al 2018 Nano Energy 51 774

    Article  CAS  Google Scholar 

  2. Devolder T, Tahmasebi T, Eimer S, Hauet T and Andrieu S 2013 Appl. Phys. Lett. 103 242410

    Article  Google Scholar 

  3. Singh S C and Gopal R 2008 J. Phys. Chem. C 112 2812

    Article  CAS  Google Scholar 

  4. Qi X, Zhang M, Zhang X, Gu Y, Zhu H, Yang W et al 2017 RSC Adv. 7 51801

    Article  Google Scholar 

  5. Singh S C, Peng Y, Rutledge J and Guo C 2019 ACS Appl. Electron. Mater. 1 1169

    Article  CAS  Google Scholar 

  6. Li L, Niu R and Zhang Y 2018 RSC Adv. 8 12428

    Article  Google Scholar 

  7. Wu K, Li J and Zhang C 2019 Ceram. Int. 45 11143

    Article  Google Scholar 

  8. Arimi A, Megatif L, Granone L I, Dillert R and Bahnemann D W 2018 J. Photochem. Photobiol. A: Chem. 366 118

  9. Mahalakshmi S, Jayasri R, Nithiyanatham S, Swetha S and Santhi K 2019 Appl. Surf. Sci. 494 51

    Article  CAS  Google Scholar 

  10. Martineze Vargas S, Martínez A I, Hernandez-Beteta E E, Mijangose-Ricardez O F, Vazquez-Hipolito V, Patino-Carachure C et al 2018 J. Mol. Struct. 1154 524

  11. Martínez-Rodríguez N L, Tavárez S and González-Sánchez Z I 2019 Toxicol. In Vitro 57 54

    Article  Google Scholar 

  12. Adebiyi B M, Duraia E S M and Beall G W 2019 J. Magn. Magn. Mater. 489 165401

    Article  Google Scholar 

  13. Carotta M C, Ferroni M, Gnani D, Guidi V, Merli M, Martinelli G et al 1999 Sens. Actuators B 58 310

    Article  CAS  Google Scholar 

  14. Jaroenworaluck A, Sunsaneeyametha W, Kosachan N and Stevens R 2006 Surf. Interface Anal. 38 473

    Article  CAS  Google Scholar 

  15. Linsebigler A L, Lu G and Yates Jr J T 1995 Chem. Rev. 95 735

    Article  CAS  Google Scholar 

  16. Zhang L, Kanki T, Sano N and Toyoda A 2003 Sep. Purif. Technol. 31 105

    Article  CAS  Google Scholar 

  17. Sun S, Murray C B, Weller D, Folks L and Moser A 2000 Science 287 1989

    Article  CAS  Google Scholar 

  18. Kim T H, Jang E Y, Lee N J, Choi D J, Lee K-J, Jang J-T et al 2009 Nano Lett. 9 2229

  19. Tromsdorf U I, Bruns O T, Salmen S C, Beisiegel U and Weller H 2009 Nano Lett. 9 4434

  20. Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V et al 2008 Chem. Rev. 108 2064

    Article  CAS  Google Scholar 

  21. Laurent S, Dutz S, Häfeli U O and Mahmoudi M 2011 Adv. Colloid Interface Sci. 166 8

    Article  CAS  Google Scholar 

  22. Chirita M and Grozescu I 2009 Chem. Bull. 54 1

    Google Scholar 

  23. Singh S C, Zeng H, Yang S, Cai W, Hong M, Chen G et al 2012 in Nanomaterials: processing and characterization with lasers (Germany: John Wiley & Sons) Chap 6, p 317 ISBN: 978-0-470-17795-2

  24. Anikin K V, Melnik N N, Simakin A V, Shafeev G A, Voronov V V and Vitukhnovsky A G 2002 Chem. Phys. Lett. 366 357

    Article  CAS  Google Scholar 

  25. Singh S C and Gopal R 2010 J. Phys. Chem. C 114 9277

    Article  CAS  Google Scholar 

  26. Singh S C, Swarnkar R K and Gopal R 2009 J. Nanopart. Res. 11 1831

    Article  CAS  Google Scholar 

  27. Semaltianos N G, Logothetidis S, Perrie W, Romani S, Potter R J, Sharp M et al 2009 Appl. Phys. A 94 641

    Article  CAS  Google Scholar 

  28. Semaltianos N G, Logothetidis S, Perrie W, Romani S, Potter R J, Sharp M et al 2009 Appl. Phys. Lett. 95 033302

    Article  Google Scholar 

  29. Luches A and Aaron Peled 2005 Appl. Surf. Sci. 248 209

    Article  Google Scholar 

  30. Neumeister A, Jakobi J, Rehbock C, Moysig J and Barcikowski S 2014 Phys. Chem. Chem. Phys. 16 23671

    Article  Google Scholar 

  31. Zhang J, Oko D N, Garbarino S, Imbeault R, Chaker M, Tavares A C et al 2012 J. Phys. Chem. C 116 13413

  32. Malviya K D and Chattopadhyay K 2014 J. Phys. Chem. C 118 13228

    Article  CAS  Google Scholar 

  33. Amendola V, Meneghetti M, Bakr O M, Riello P, Polizzi S, Anjum D H et al 2013 Nanoscale 5 5611

  34. Sree Satya Bharati M, Byram C and Soma V R 2018 Front. Phys. 6 28

    Article  Google Scholar 

  35. Singh S C and Gopal R 2008 Physica E 40 724

    Article  CAS  Google Scholar 

  36. Singh S C 2011 J. Nanopart. Res. 13 4143

    Article  CAS  Google Scholar 

  37. Streubel R, Barcikowski S and Gökce B 2016 Opt. Lett. 41 1486

    Article  CAS  Google Scholar 

  38. Streubel R, Bendt G and Gökce B 2016 Nanotechnology 27 205602

    Article  Google Scholar 

  39. Singh S C, Zeng H, Guo C and Cai W (eds) 2012 Nanomaterials: processing and characterization with lasers (Germany: John Wiley & Sons) ISBN: 978-0-470-17795-2

  40. Shukla A, Singh S C, Pandey B K, Uttam K N, Shah J, Kotnala R K et al 2015 Adv. Mater. Lett. 12 1066

    Article  Google Scholar 

  41. Singh S C, Swarnkar R K and Gopal R 2009 J. Nanosci. Nanotech. 9 5367

    Article  CAS  Google Scholar 

  42. Mullen E K and Mccallum I S 2013 Am. Mineral. 98 417

  43. Seitz G, Penin N, Decoux L, Wattiaux A, Duttine M and Gaudon M 2016 Inorg. Chem. 55 2499

    Article  Google Scholar 

  44. Singh S C, Mishra S K, Srivastava R K and Gopal R 2010 J. Phys. Chem. C 114 17374

    Article  CAS  Google Scholar 

  45. Shukla A, Bhardwaj A K, Singh S C, Uttam K N, Gautam N, Himanshu A K et al 2018 J. Appl. Phys. 123 161411

  46. Zeng H, Du X-W, Singh S C, Kulinich S A, Yang S, He J et al 2012 Adv. Funct. Mater. 22 1333

    Article  Google Scholar 

  47. Choi Y I, Kim Y-I, Cho D W, Kang J-S, Leung K T and Sohn Y 2015 RSC Adv. 5 79624

  48. Chandramohan P, Srinivasan M P, Velmurugan S and Narasimhan S V 2011 J. Solid State Chem. 184 89

    Article  CAS  Google Scholar 

  49. Singh S C, Kotnala R K and Gopal R 2015 J. Appl. Phys. 118 64305

    Article  Google Scholar 

  50. Singh S C, Fallon C, Hayden P, Mujawar M, Yeates P and Costello J T 2014 Phys. Plasmas 21 093113

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to BRNS-DAE, UGC and DST, New Delhi, for providing financial assistance to create the ATR-FTIR and confocal micro-Raman spectroscopy facility under UGC–CAS and FIST program to the Department of Physics, University of Allahabad, Prayagraj, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Singh, S.C., Kotnala, R.K. et al. Target phase-induced compositional control in liquid-phase pulsed laser ablation produced titanium ferrite nanomaterials. Bull Mater Sci 44, 152 (2021). https://doi.org/10.1007/s12034-021-02431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02431-4

Keywords

Navigation