Skip to main content
Log in

II–VI semiconductor nanoparticles synthesized by laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles of the II–VI semiconductors CdTe, CdSe and ZnTe were synthesized by laser ablation (387 nm, 180 fs, 1 kHz, pulse energy of 7 μJ (fluence of 2 J/cm2)) of the target materials in methanol, de-ionized water and acetone. The nanoparticles size distributions follow log-normal functions with median diameters between about 6 and 11 nm for the several materials. The nanoparticles have the same crystalline structure as that of the corresponding bulk material and under the present conditions of ablation are rich in the higher volatility element of the two in the binary alloy and oxidized. Photoluminescence emission in the green-yellow (∼570 nm) was detected from CdSe nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  2. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  3. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  4. D.V. Talapin, S. Haubold, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. 105, 2260 (2001)

    Google Scholar 

  5. M. Gao, S. Kirstein, H. Möhwald, A.L. Rogach, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. 102, 8360 (1998)

    Google Scholar 

  6. E. Jackson, R. Aga Jr., A. Steigerwald, A. Ueada, D. Coffey, L. Allard, Z. Pan, W.E. Collins, R. Mu, Phys. Status Solidi C 3, 3582 (2006)

    Article  Google Scholar 

  7. D.H. Lowndes, C.M. Rouleau, T.G. Thundat, G. Duscher, E.A. Kenik, S.J. Pennycook, J. Mater. Res. 14, 359 (1999)

    Article  ADS  Google Scholar 

  8. T. Koyama, S. Ohtsuka, H. Nagata, S. Tanaka, J. Cryst. Growth 117, 156 (1992)

    Article  ADS  Google Scholar 

  9. A.A. Ruth, J.A. Young, Colloids Surf. A Physicochem. Eng. Asp. 279, 121 (2006)

    Article  Google Scholar 

  10. K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 366, 357 (2002)

    Article  ADS  Google Scholar 

  11. S.-H. Choi, T. Sasaki, Y. Shimizu, J.-W. Yoon, W.T. Nichols, Y.-E. Sung, N. Koshizaki, J. Phys. Conf. Ser. 59, 388 (2007)

    Article  ADS  Google Scholar 

  12. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  13. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85, 3301 (1999)

    Article  ADS  Google Scholar 

  14. P. Stampfli, K.H. Bennemann, Phys. Rev. B 49, 7299 (1994)

    Article  ADS  Google Scholar 

  15. J. Bonse, S.M. Wiggins, J. Solis, J. Appl. Phys. 96, 2628 (2004)

    Article  ADS  Google Scholar 

  16. D. Perez, L.J. Lewis, Phys. Rev. Lett. 89, 255504-1 (2002)

    Article  ADS  Google Scholar 

  17. T.E. Glover, G.D. Ackerman, A. Belkacem, P.A. Heimann, Z. Hussain, R.W. Lee, H.A. Padmore, C. Ray, R.W. Schoenlein, W.F. Steele, D.A. Young, Phys. Rev. Lett. 90, 236102-1 (2003)

    ADS  Google Scholar 

  18. T.E. Glover, G.D. Ackerman, R.W. Lee, D.A. Young, Appl. Phys. A 78, 995 (2004)

    Article  ADS  Google Scholar 

  19. S. Amoruso, G. Ausanio, A.C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, X. Wang, J. Phys. B At. Mol. Opt. Phys. 38, L329 (2005)

    Article  ADS  Google Scholar 

  20. J. Perrière, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D 40, 7069 (2007)

    Article  ADS  Google Scholar 

  21. E. Millon, J. Perrière, R.M. Defourneau, D. Defourneau, O. Albert, J. Etchepare, Appl. Phys. A 77, 73 (2003)

    Article  ADS  Google Scholar 

  22. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, E. Million, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  23. G. Bardi, K. Ieronimakis, G. Trionfetti, Thermochim. Acta 129, 341 (1988)

    Article  Google Scholar 

  24. A. Nasar, M. Shamsuddin, J. Less-Comon Met. 161, 93 (1990)

    Article  Google Scholar 

  25. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  26. L.E. Brus, IEEE J. Quantum Electron. 22(9), 1909 (1986)

    Article  ADS  Google Scholar 

  27. O. Madelung, H. Weiss, M. Shultz (eds.), Landolt-Börnstein, New Series 1987, Group III, vol. 17, 22nd edn. (Springer, Berlin, 1987)

    Google Scholar 

  28. J.W. Edington, Typical Electron Microscope Investigations (Macmillan, New York, 1976). JCPDS file No. 08-0459

    Google Scholar 

  29. CRC Handbook of Chemistry and Physics, 88th edn. (2007–2008)

  30. M. Šimurda, P. Němec, F. Trojánek, P. Malý, Thin Solid Films 453, 300 (2004)

    Article  Google Scholar 

  31. N. Myung, Y. Bae, A.J. Bard, Nano Lett. 3, 747 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Semaltianos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semaltianos, N.G., Logothetidis, S., Perrie, W. et al. II–VI semiconductor nanoparticles synthesized by laser ablation. Appl. Phys. A 94, 641–647 (2009). https://doi.org/10.1007/s00339-008-4854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4854-y

PACS

Navigation