Skip to main content

Advertisement

Log in

From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., & Wu, H.-C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27, 1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Castelli, M. S., McGonigle, P., & Hornby, P. J. (2019). The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacology Research & Perspectives, 7, e00535.

    Article  Google Scholar 

  3. Cai, H.H. Therapeutic Monoclonal Antibodies Approved by FDA in 2020.

  4. Lyu, X., Zhao, Q., Hui, J., Wang, T., Lin, M., Wang, K., Zhang, J., Shentu, J., Dalby, P. A., Zhang, H., & Liu, B. (2022). The global landscape of approved antibody therapies. Antib. Ther., 5, 233–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplon, H., & Reichert, J. M. (2019). Antibodies to watch in 2019. mAbs, 11, 219–238.

    Article  CAS  PubMed  Google Scholar 

  6. Dumont, J., Euwart, D., Mei, B., Estes, S., & Kshirsagar, R. (2016). Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Critical Reviews in Biotechnology, 36, 1110–1122.

    Article  CAS  PubMed  Google Scholar 

  7. Li, W., Fan, Z., Lin, Y., & Wang, T.-Y. (2021). Serum-free medium for recombinant protein expression in chinese hamster ovary cells. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2021.646363

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tihanyi, B., & Nyitray, L. (2020). Recent advances in CHO cell line development for recombinant protein production. Drug Discovery Today: Technologies, 38, 25–34.

    Article  PubMed  Google Scholar 

  9. Wang, X.-Y., Zhang, J.-H., Zhang, X., Sun, Q.-L., Zhao, C.-P., & Wang, T.-Y. (2016). Impact of different promoters on episomal vectors harbouring characteristic motifs of matrix attachment regions. Science and Reports, 6, 26446.

    Article  CAS  ADS  Google Scholar 

  10. Brown, A. J., Sweeney, B., Mainwaring, D. O., & James, D. C. (2014). Synthetic promoters for CHO cell engineering. Biotechnology and Bioengineering, 111, 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  11. Ho, S. C., Yeo, J. H., Fang, S. G., & Yang, Y. (2015). Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Molecular Biotechnology, 57, 138–144.

    Article  CAS  PubMed  Google Scholar 

  12. Voss, S. D., Schlokat, U., & Gruss, P. (1986). The role of enhancers in the regulation of cell-type-specific transcriptional control. Trends in Biochemical Sciences, 11, 287–289.

    Article  CAS  Google Scholar 

  13. Zúñiga, R. A., Gutiérrez-González, M., Collazo, N., Sotelo, P. H., Ribeiro, C. H., Altamirano, C., Lorenzo, C., Aguillón, J. C., & Molina, M. C. (2019). Development of a new promoter to avoid the silencing of genes in the production of recombinant antibodies in chinese hamster ovary cells. Journal of Biological Engineering, 13, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Even, D. Y., Kedmi, A., Basch-Barzilay, S., Ideses, D., Tikotzki, R., Shir-Shapira, H., Shefi, O., & Juven-Gershon, T. (2016). Engineered promoters for potent transient overexpression. PLoS ONE, 11, e0148918.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sheikholeslami, Z., Jolicoeur, M., & Henry, O. (2014). Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Biotechnology Progress, 30, 535–546.

    Article  CAS  PubMed  Google Scholar 

  16. Poulain, A., Perret, S., Malenfant, F., Mullick, A., Massie, B., & Durocher, Y. (2017). Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Journal of Biotechnology, 255, 16–27.

    Article  CAS  PubMed  Google Scholar 

  17. Poulain, A., Mullick, A., Massie, B., & Durocher, Y. (2019). Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Journal of Biotechnology, 296, 32–41.

    Article  CAS  PubMed  Google Scholar 

  18. Castan, A., Schulz, P., Wenger, T., & Fischer, S. (2018). Chapter 7 - Cell Line Development. In G. Jagschies, E. Lindskog, K. Łącki, & P. Galliher (Eds.), Biopharmaceutical processing (pp. 131–146). Elsevier.

    Chapter  Google Scholar 

  19. del Refugio Rocha-Pizaña, M., Ascencio-Favela, G., Soto-García, B. M., de la Luz Martinez-Fierro, M., & Alvarez, M. M. (2017). Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells. Protein Expression and Purification, 132, 108–115.

    Article  Google Scholar 

  20. Nematpour, F., Mahboudi, F., Vaziri, B., Khalaj, V., Ahmadi, S., Ahmadi, M., Ebadat, S., & Davami, F. (2017). Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells. BMC Biotechnology, 17, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doan, C. C., Ho, N. Q. C., Nguyen, T. T., Nguyen, T. P. T., Do, D. G., Hoang, N. S., & Le, T. L. (2022). Enhancement of anti-TNFα monoclonal antibody production in CHO cells through the use of UCOE and DHFR elements in vector construction and the optimization of cell culture media. Preparative Biochemistry & Biotechnology, 52, 452–470.

    Article  CAS  Google Scholar 

  22. Zhang, J.-H., Zhang, J.-H., Wang, X.-Y., Xu, D.-H., & Wang, T.-Y. (2020). Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells. Biotechnology Letters, 42, 187–196.

    Article  CAS  PubMed  Google Scholar 

  23. Girod, P.-A., Nguyen, D.-Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., Regamey, A., Saugy, D., Beckmann, J. S., Bucher, P., & Mermod, N. (2007). Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nature Methods, 4, 747–753.

    Article  CAS  PubMed  Google Scholar 

  24. Saunders, F., Sweeney, B., Antoniou, M. N., Stephens, P., & Cain, K. (2015). Chromatin function modifying elements in an industrial antibody production platform - comparison of UCOE, MAR, STAR and cHS4 elements. PLoS ONE, 10, e0120096.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ayyar, B. V., Arora, S., & Ravi, S. S. (2017). Optimizing antibody expression: the nuts and bolts. Methods, 116, 51–62.

    Article  CAS  PubMed  Google Scholar 

  26. Hung, F., Deng, L., Ravnikar, P., Condon, R., Li, B., Do, L., Saha, D., Tsao, Y.-S., Merchant, A., Liu, Z., & Shi, S. (2010). mRNA stability and antibody production in CHO cells: Improvement through gene optimization. Biotechnology Journal, 5, 393–401.

    Article  CAS  PubMed  Google Scholar 

  27. Angov, E. (2011). Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnology Journal, 6, 650–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baycin-Hizal, D., Tabb, D. L., Chaerkady, R., Chen, L., Lewis, N. E., Nagarajan, H., Sarkaria, V., Kumar, A., Wolozny, D., Colao, J., Jacobson, E., Tian, Y., O’Meally, R. N., Krag, S. S., Cole, R. N., Palsson, B. O., Zhang, H., & Betenbaugh, M. (2012). Proteomic analysis of chinese hamster ovary cells. Journal of Proteome Research, 11, 5265–5276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalwy, S., Rance, J., & Young, R. (2006). Toward more efficient protein expression. Molecular Biotechnology, 34, 151–156.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Kober, L., Zehe, C., & Bode, J. (2013). Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnology and Bioengineering, 110, 1164–1173.

    Article  CAS  PubMed  Google Scholar 

  31. Ramezani, A., Mahmoudi Maymand, E., Yazdanpanah-Samani, M., Hosseini, A., Toghraie, F. S., & Ghaderi, A. (2017). Improving Pertuzumab production by gene optimization and proper signal peptide selection. Protein Expression and Purification, 135, 24–32.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Q., Zhang, Y., Lu, X., Wang, C., Pei, X., Lu, Y., Cao, C., Xu, C., & Zhang, B. (2021). Stable overexpression of mutated PTEN in Chinese hamster ovary cells enhances their performance and therapeutic antibody production. Biotechnology Journal, 16, 2000623.

    Article  CAS  Google Scholar 

  33. Dogan, A. A., & Dufva, M. (2023). Heterogenous morphogenesis of Caco-2 cells reveals that flow induces three-dimensional growth and maturation at high initial seeding cell densities. Biotechnology and Bioengineering, 120, 1667–1677.

    Article  CAS  PubMed  Google Scholar 

  34. Hashemi, N., Tabatabaee, S. H., Shams, F., Rahimpour, A., Kazemi, B., Rajabibazl, M., & Ranjbari, J. (2023). Overexpression of SIRT6 alleviates apoptosis and enhances cell viability and monoclonal antibody expression in CHO-K1 cells. Molecular Biology Reports, 50, 6019–6027.

    Article  CAS  PubMed  Google Scholar 

  35. Wong, D. C. F., Wong, K. T. K., Nissom, P. M., Heng, C. K., & Yap, M. G. S. (2006). Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnology and Bioengineering, 95, 350–361.

    Article  CAS  PubMed  Google Scholar 

  36. MacDonald, M. A., Barry, C., Groves, T., Martínez, V. S., Gray, P. P., Baker, K., Shave, E., Mahler, S., Munro, T., Marcellin, E., & Nielsen, L. K. (2022). Modeling apoptosis resistance in CHO cells with CRISPR-mediated knockouts of Bak1, Bax, and Bok. Biotechnology and Bioengineering, 119, 1380–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahimi, A., Karimipoor, M., Mahdian, R., Alipour, A., Hosseini, S., Mohammadi, M., Kaghazian, H., Abbasi, A., Shahsavarani, H., & Shokrgozar, M. A. (2023). Efficient CRISPR/Cas9-mediated BAX gene ablation in CHO cells to impair apoptosis and enhance recombinant protein production. Iranian Journal of Biotechnology, 21, e3388.

    PubMed  PubMed Central  Google Scholar 

  38. Thalén, N., J. Hicks, M. Lundqvist, A. Backmark, S. Engberg, C. Raynoschek, J. Gunnarsson, A.-L. Volk, R. Roth, and J. Rockberg (2021) ULK1 knockout cell line downregulates autophagy, upregulates recombinant transcript and improves protein secretion.

  39. Mulukutla, B. C., Mitchell, J., Geoffroy, P., Harrington, C., Krishnan, M., Kalomeris, T., Morris, C., Zhang, L., Pegman, P., & Hiller, G. W. (2019). Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures. Metabolic Engineering, 54, 54–68.

    Article  CAS  PubMed  Google Scholar 

  40. An LDHa single allele CHO cell mutant exhibits altered metabolic state and enhanced culture performance - Wilkens - 2019 - Journal of Chemical Technology & Biotechnology - Wiley Online Library[Online]. Available: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/jctb.5906. [Accessed: 15-Sep-2023].

  41. Ley, D., Pereira, S., Pedersen, L. E., Arnsdorf, J., Hefzi, H., Davy, A. M., Ha, T. K., Wulff, T., Kildegaard, H. F., & Andersen, M. R. (2019). Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion. Metabolic Engineering, 56, 120–129.

    Article  CAS  PubMed  Google Scholar 

  42. Jiménez, N., Martínez, V. S., & Gerdtzen, Z. P. (2019). Engineering CHO cells galactose metabolism to reduce lactate synthesis. Biotechnology Letters, 41, 779–788.

    Article  PubMed  Google Scholar 

  43. Tang, D., Sandoval, W., Liu, P., Lam, C., Snedecor, B., & Misaghi, S. (2021). Preventing pyruvate kinase muscle expression in Chinese hamster ovary cells curbs lactogenic behavior by altering glycolysis, gating pyruvate generation, and increasing pyruvate flux into the TCA cycle. Biotechnology Progress, 37, e3193.

    Article  CAS  PubMed  Google Scholar 

  44. Donaldson, J. S., Dale, M. P., & Rosser, S. J. (2021). Decoupling growth and protein production in CHO cells: A targeted approach. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2021.658325

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaluria, P., Betenbaugh, M., Konstantopoulos, K., & Shiloach, J. (2007). Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnology, 7, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuystermans, D., & Al-Rubeai, M. (2009). cMyc increases cell number through uncoupling of cell division from cell size in CHO cells. BMC Biotechnology, 9, 76.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hong, J. K., Lee, S. M., Kim, K.-Y., & Lee, G. M. (2014). Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 98, 5417–5425.

    Article  CAS  PubMed  Google Scholar 

  48. Bojar, D., Fuhrer, T., & Fussenegger, M. (2019). Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metabolic Engineering, 52, 110–123.

    Article  CAS  PubMed  Google Scholar 

  49. Zhong, X., Cooley, C., Seth, N., Juo, Z. S., Presman, E., Resendes, N., Kumar, R., Allen, M., Mosyak, L., Stahl, M., Somers, W., & Kriz, R. (2012). Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: Molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotechnology and Bioengineering, 109, 1723–1734.

    Article  CAS  PubMed  Google Scholar 

  50. Shen, C.-C., Lin, M.-W., Nguyen, B. K. T., Chang, C.-W., Shih, J.-R., Nguyen, M. T. T., Chang, Y.-H., & Hu, Y.-C. (2020). CRISPR-Cas13d for gene knockdown and engineering of CHO cells. ACS Synthetic Biology, 9, 2808–2818.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, G., Wang, Q., Chen, L., Betenbaugh, M. J., & Zhang, H. (2021). Glycoproteomic characterization of FUT8 Knock-Out CHO cells reveals roles of FUT8 in the glycosylation. Frontiers in Chemistry, 9, 755238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prabhu, A., Shanmugam, D., & Gadgil, M. (2022). Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells. Metabolic Engineering, 74, 61–71.

    Article  CAS  PubMed  Google Scholar 

  53. Fischer, S., Mathias, S., Stadermann, A., Yang, S., Schmieder, V., Zeh, N., Schmidt, N., Richter, P., Wright, S., Zimmermann, E., Ley, Y., van der Meer, J., Hartsch, T., Bernloehr, C., Otte, K., Bradl, H., Gamer, M., & Schulz, P. (2022). Loss of a newly discovered microRNA in Chinese hamster ovary cells leads to upregulation of N-glycolylneuraminic acid sialylation on monoclonal antibodies. Biotechnology and Bioengineering, 119, 832–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kellems, R. E. (1991). Gene amplification in mammalian cells: Strategies for protein production. Current Opinion in Biotechnology, 2, 723–729.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, J.-H., Shan, L.-L., Liang, F., Du, C.-Y., & Li, J.-J. (2022). Strategies and considerations for improving recombinant antibody production and quality in Chinese hamster ovary cells. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2022.856049

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sharker, S. M., & Rahman, A. (2021). A review on the current methods of Chinese hamster ovary (CHO) cells cultivation for the production of therapeutic protein. Current Drug Discovery Technologies., 18, 354–364.

    Article  CAS  PubMed  Google Scholar 

  57. Chusainow, J., Yang, Y. S., Yeo, J. H. M., Toh, P. C., Asvadi, P., Wong, N. S. C., & Yap, M. G. S. (2009). A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnology and Bioengineering, 102, 1182–1196.

    Article  CAS  PubMed  Google Scholar 

  58. Naddafi, F., Davami, F., Tabarzad, M., Barkhordari, F., & Shirazi, F. H. (2019). Construction of a mammalian IRES-based expression vector to amplify a bispecific antibody; blinatumomab. Iran. J. Pharm. Res. IJPR, 18, 2117–2123.

    CAS  PubMed  Google Scholar 

  59. Jostock, T., & Knopf, H.-P. (2012). Mammalian stable expression of biotherapeutics. Methods and Protocols, 899, 227–238.

    CAS  Google Scholar 

  60. Lin, P.-C., Chan, K. F., Kiess, I. A., Tan, J., Shahreel, W., Wong, S.-Y., & Song, Z. (2019). Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. mAbs, 11, 965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan, L., Kadura, I., Krebs, L. E., Hatfield, C. C., Shaw, M. M., & Frye, C. C. (2012). Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnology and Bioengineering, 109, 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  62. Srila, W., Baumann, M., Riedl, M., Rangnoi, K., Borth, N., & Yamabhai, M. (2023). Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies. Science and Reports, 13, 10473.

    Article  CAS  ADS  Google Scholar 

  63. Zhu, J., & Hatton, D. (2018). New mammalian expression systems. Advances in Biochemical Engineering/Biotechnology, 165, 9–50.

    Article  CAS  PubMed  Google Scholar 

  64. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  65. Melton, D. W., Ketchen, A. M., Kind, A. J., McEwan, C., Paisley, D., & Selfridge, J. (2001). A one-step gene amplification system for use in cultured mammalian cells and transgenic animals. Transgenic Research, 10, 133–142.

    Article  CAS  PubMed  Google Scholar 

  66. Barnes, L. M., Bentley, C. M., & Dickson, A. J. (2001). Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnology and Bioengineering, 73, 261–270.

    Article  CAS  PubMed  Google Scholar 

  67. Rita Costa, A., Elisa Rodrigues, M., Henriques, M., Azeredo, J., & Oliveira, R. (2010). Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 74, 127–138.

    Article  CAS  PubMed  Google Scholar 

  68. Ilyayev, N., C. Martel, M. Mazumder, N. Singh, and R. Rahbar (2022) Use of Solentim verified in-situ plate seeding (VIPSTM) enhances single-cell cloning efficiencybioRxiv, 2022.06.03.494661.

  69. Fieder, J., Schulz, P., Gorr, I., Bradl, H., & Wenger, T. (2017). A single-step FACS sorting strategy in conjunction with fluorescent vital dye imaging efficiently assures clonality of biopharmaceutical production cell lines. Biotechnology Journal, 12, 1700002.

    Article  Google Scholar 

  70. Roy, G., Miro-Quesada, G., Zhuang, L., Martin, T., Zhu, J., Wu, H., Marelli, M., & Bowen, M. A. (2017). Sequential screening by ClonePix FL and intracellular staining facilitate isolation of high producer cell lines for monoclonal antibody manufacturing. Journal of Immunological Methods, 451, 100–110.

    Article  CAS  PubMed  Google Scholar 

  71. Increasing HD-BIOP3 Seeding Efficiencies Using the VIPSTM: Solentim describes a powerful cell line development platform that achieves high seeding efficiencies and improved outgrowth: Genetic Engineering & Biotechnology News: Vol 39, No 8[Online]. Available: https://www.liebertpub.com/doi/https://doi.org/10.1089/gen.39.08.19. [Accessed: 29-Apr-2023].

  72. Nelep, C., & Eberhardt, J. (2018). Automated rare single cell picking with the ALS cellcelector™. Cytometry. Part A, 93, 1267–1270.

    Article  Google Scholar 

  73. Yim, M., & Shaw, D. (2018). Achieving greater efficiency and higher confidence in single-cell cloning by combining cell printing and plate imaging technologies. Biotechnology Progress, 34, 1454–1459.

    Article  CAS  PubMed  Google Scholar 

  74. Josephides, D., Davoli, S., Whitley, W., Ruis, R., Salter, R., Gokkaya, S., Vallet, M., Matthews, D., Benazzi, G., Shvets, E., Gesellchen, F., Geere, D., Liu, X., Li, X., Mackworth, B., Young, W., Owen, Z., Smith, C., Starkie, D., … Holmes, D. (2020). Cyto-Mine: An integrated, picodroplet system for high-throughput single-cell analysis, sorting, dispensing, and monoclonality assurance. SLAS Technol., 25, 177–189.

    Article  PubMed  Google Scholar 

  75. Kim, T. K., & Eberwine, J. H. (2010). Mammalian cell transfection: The present and the future. Analytical and Bioanalytical Chemistry, 397, 3173–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chong, Z. X., Yeap, S. K., & Ho, W. Y. (2021). Transfection types, methods and strategies: A technical review. PeerJ, 9, e11165.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research, 1, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B.-W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 106, 27–44.

    Article  CAS  PubMed  Google Scholar 

  79. Lalani, J., & Misra, A. (2011). 4 - Gene delivery using chemical methods. In A. Misra (Ed.), Challenges in delivery of therapeutic genomics and proteomics (pp. 127–206). Elsevier.

    Chapter  Google Scholar 

  80. Geisse, S., & Fux, C. (2009). Chapter 15 recombinant protein production by transient gene transfer into mammalian cells. In R. R. Burgess & M. P. Deutscher (Eds.), Methods in enzymology (Vol. 463, pp. 223–238). Academic Press.

    Google Scholar 

  81. Hunter, M., Yuan, P., Vavilala, D., & Fox, M. (2019). Optimization of protein expression in mammalian cells. Current Protocols in Protein Science, 95, e77.

    Article  PubMed  Google Scholar 

  82. Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M., & Wurm, F. M. (2008). Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Research, 36, e96.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Longo, P. A., Kavran, J. M., Kim, M.-S., & Leahy, D. J. (2013). Chapter Eighteen - transient mammalian cell transfection with polyethylenimine (PEI). In J. Lorsch (Ed.), Methods in enzymology (Vol. 529, pp. 227–240). Academic Press.

    Chapter  Google Scholar 

  84. Steger, K., Brady, J., Wang, W., Duskin, M., Donato, K., & Peshwa, M. (2015). CHO-S antibody Titers >1 Gram/Liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. Journal of Biomolecular Screening, 20, 545–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y., & Yu, L.-C. (2008). Microinjection as a tool of mechanical delivery. Current Opinion in Biotechnology, 19, 506–510.

    Article  CAS  PubMed  Google Scholar 

  86. Nakayama, A., Sato, M., Shinohara, M., Matsubara, S., Yokomine, T., Akasaka, E., Yoshida, M., & Takao, S. (2007). Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system. Cloning and Stem Cells, 9, 523–534.

    Article  CAS  PubMed  Google Scholar 

  87. Xiao, Z., Sabourin, M., Piras, G., & Gorfien, S. F. (2014). Screening and optimization of chemically defined media and feeds with integrated and statistical approaches. In R. Pörtner (Ed.), Animal cell biotechnology: Methods and protocols (pp. 117–135). Humana Press.

    Chapter  Google Scholar 

  88. Maximizing Performance of Your Biologics Pipeline: - BioProcess InternationalBioProcess International[Online]. Available: https://bioprocessintl.com/sponsored-content/maximizing-performance-of-your-biologics-pipeline-media-and-process-optimization-using-cutting-edge-tools/. [Accessed: 25-Apr-2023].

  89. Saldanha, M., Shelar, A., Patil, V., Warke, V. G., Dandekar, P., & Jain, R. (2023). A case study: Correlation of the nutrient composition in Chinese Hamster Ovary cultures with cell growth, antibody titre and quality attributes using multivariate analyses for guiding medium and feed optimization in early upstream process development. Cytotechnology, 75, 77–91.

    Article  CAS  PubMed  Google Scholar 

  90. Sargent, B. (2021) Cell Culture Media Analysis in Upstream Biologics Development. Cell Culture Dish. [Online]. Available: https://cellculturedish.com/cell-culture-media-analysis-upstream-biologics-development/. [Accessed: 25-Apr-2023].

  91. Mora, A., Nabiswa, B., Duan, Y., Zhang, S., Carson, G., & Yoon, S. (2019). Early integration of Design of Experiment (DOE) and multivariate statistics identifies feeding regimens suitable for CHO cell line development and screening. Cytotechnology, 71, 1137–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Puente-Massaguer, E., Badiella, L., Gutiérrez-Granados, S., Cervera, L., & Gòdia, F. (2019). A statistical approach to improve compound screening in cell culture media. Engineering in Life Sciences, 19, 315–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dagoneau, C. (2022) Manufacturing Biologics in a J.POD Facility. BioProcess International. .

  94. Ganeeva, I., Zmievskaya, E., Valiullina, A., Kudriaeva, A., Miftakhova, R., Rybalov, A., & Bulatov, E. (2022). Recent advances in the development of bioreactors for manufacturing of adoptive cell immunotherapies. Bioengineering, 9, 808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. The Rise of Single-use Bioreactors: Why make the Switch?[Online]. Available: https://boydbiomedical.com/articles/the-rise-of-single-use-bioreactors-why-make-the-switch. [Accessed: 25-Apr-2023].

  96. Single Use Bioreactors Market Revenue Trends and Growth Drivers. MarketsandMarkets. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/single-use-bioreactor-market-49113750.html. [Accessed: 25-Apr-2023].

  97. Digital manufacturing of biologics | Cytiva[Online]. Available: https://www.cytivalifesciences.com/en/us/solutions/bioprocessing/knowledge-center/digital-manufacturing-of-biologics. [Accessed: 25-Apr-2023].

  98. MVDA Models: Continued Process Verification - BioProcess InternationalBioProcess International[Online]. Available: https://bioprocessintl.com/manufacturing/process-monitoring-and-controls/mvda-models-for-continued-process-verification/. [Accessed: 25-Apr-2023].

  99. Rathore, A. S., Mishra, S., Nikita, S., & Priyanka, P. (2021). Bioprocess control: Current progress and future perspectives. Life, 11, 557.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  100. Cheng, Y., Bi, X., Xu, Y., Liu, Y., Li, J., Du, G., Lv, X., & Liu, L. (2023). Artificial intelligence technologies in bioprocess: Opportunities and challenges. Bioresource Technology, 369, 128451.

    Article  CAS  PubMed  Google Scholar 

  101. Antonakoudis, A., Strain, B., Barbosa, R., Jimenez del Val, I., & Kontoravdi, C. (2021). Synergising stoichiometric modelling with artificial neural networks to predict antibody glycosylation patterns in Chinese hamster ovary cells. Computers & Chemical Engineering, 154, 107471.

    Article  CAS  Google Scholar 

  102. Kornecki, M., & Strube, J. (2019). Accelerating Biologics Manufacturing by Upstream Process Modelling. Processes, 7, 166.

    Article  CAS  Google Scholar 

  103. Real Time Process Monitoring in Biologics Development | American Pharmaceutical Review - The Review of American Pharmaceutical Business & Technology[Online]. Available: https://www.americanpharmaceuticalreview.com/Featured-Articles/564225-Real-Time-Process-Monitoring-in-Biologics-Development/. [Accessed: 25-Apr-2023].

  104. Zhao, L., Fu, H.-Y., Zhou, W., & Hu, W.-S. (2015). Advances in process monitoring tools for cell culture bioprocesses. Engineering in Life Sciences, 15, 459–468.

    Article  CAS  Google Scholar 

  105. Recent Trends in Data Analytics for Upstream Process Workflows[Online]. Available: https://www.biopharminternational.com/view/recent-trends-in-data-analytics-for-upstream-process-workflows. [Accessed: 25-Apr-2023].

  106. Hubli, G. B., Banerjee, S., & Rathore, A. S. (2023). Near-infrared spectroscopy based monitoring of all 20 amino acids in mammalian cell culture broth. Talanta, 254, 124187.

    Article  CAS  PubMed  Google Scholar 

  107. Martínez-Torrecuadrada, J. L., Romero, S., Núñez, A., Alfonso, P., Sánchez-Céspedes, M., & Casal, J. I. (2005). An efficient expression system for the production of functionally active human LKB1. Journal of Biotechnology, 115, 23–34.

    Article  PubMed  Google Scholar 

  108. Mastrangelo, A. J., Hardwick, J. M., Bex, F., & Betenbaugh, M. J. (2000). Part I. Bcl-2 and bcl-xL limit apoptosis upon infection with alphavirus vectors. Biotechnology and Bioengineering, 67, 544–554.

    Article  CAS  PubMed  Google Scholar 

  109. Majors, B. S., Chiang, G. G., Pederson, N. E., & Betenbaugh, M. J. (2012). Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation. Protein Engineering, Design & Selection, 25, 27–38.

    Article  CAS  Google Scholar 

  110. Sauerwald, T. M., Betenbaugh, M. J., & Oyler, G. A. (2002). Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnology and Bioengineering, 77, 704–716.

    Article  CAS  PubMed  Google Scholar 

  111. Figueroa, B., Jr., Chen, S., Oyler, G. A., Hardwick, J. M., & Betenbaugh, M. J. (2004). Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnology and Bioengineering, 85, 589–600.

    Article  CAS  PubMed  Google Scholar 

  112. Ifandi, V., & Al-Rubeai, M. (2005). Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnology Progress, 21, 671–677.

    Article  CAS  PubMed  Google Scholar 

  113. Figueroa, B., Jr., Ailor, E., Osborne, D., Hardwick, J. M., Reff, M., & Betenbaugh, M. J. (2007). Enhanced cell culture performance using inducible anti-apoptotic genes E1B–19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnology and Bioengineering, 97, 877–892.

    Article  CAS  PubMed  Google Scholar 

  114. Choi, S. S., Rhee, W. J., Kim, E. J., & Park, T. H. (2006). Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using 30Kc6 gene. Biotechnology and Bioengineering, 95, 459–467.

    Article  CAS  PubMed  Google Scholar 

  115. Majors, B. S., Arden, N., Oyler, G. A., Chiang, G. G., Pederson, N. E., & Betenbaugh, M. J. (2008). E2F–1 overexpression increases viable cell density in batch cultures of Chinese hamster ovary cells. Journal of Biotechnology, 138, 103–106.

    Article  CAS  PubMed  Google Scholar 

  116. Lee, Y. Y., Wong, K. T. K., Tan, J., Toh, P. C., Mao, Y., Brusic, V., & Yap, M. G. S. (2009). Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability and improved recombinant protein production. Journal of Biotechnology, 143, 34–43.

    Article  CAS  PubMed  Google Scholar 

  117. Chiang, G. G., & Sisk, W. P. (2005). Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 779–792.

    Article  CAS  PubMed  Google Scholar 

  118. Lee, J. S., Ha, T. K., Park, J. H., & Lee, G. M. (2013). Anti-cell death engineering of CHO cells: Co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnology and Bioengineering, 110, 2195–2207.

    Article  CAS  PubMed  Google Scholar 

  119. Kim, S. H., & Lee, G. M. (2007). Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Applied Microbiology and Biotechnology, 74, 152–159.

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Fogolı́n, M. B., Wagner, R., Etcheverrigaray, M., & Kratje, R. (2004). Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. Journal of Biotechnology, 109, 179–191.

    Article  PubMed  Google Scholar 

  121. Kim, S. H., & Lee, G. M. (2007). Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Applied Microbiology and Biotechnology, 76, 659–665.

    Article  CAS  PubMed  Google Scholar 

  122. Park, H.-S., Kim, I.-H., Kim, I.-Y., Kim, K.-H., & Kim, H.-J. (2000). Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. Journal of Biotechnology, 81, 129–140.

    Article  CAS  PubMed  Google Scholar 

  123. Chong, W. P. K., Reddy, S. G., Yusufi, F. N. K., Lee, D.-Y., Wong, N. S. C., Heng, C. K., Yap, M. G. S., & Ho, Y. S. (2010). Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: Overexpression of malate dehydrogenase II. Journal of Biotechnology, 147, 116–121.

    Article  CAS  PubMed  Google Scholar 

  124. Tabuchi, H., Sugiyama, T., Tanaka, S., & Tainaka, S. (2010). Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnology and Bioengineering, 107, 998–1003.

    Article  CAS  PubMed  Google Scholar 

  125. Tabuchi, H., & Sugiyama, T. (2013). Cooverexpression of alanine aminotransferase 1 in Chinese hamster ovary cells overexpressing taurine transporter further stimulates metabolism and enhances product yield. Biotechnology and Bioengineering, 110, 2208–2215.

    Article  CAS  PubMed  Google Scholar 

  126. Fussenegger, M., Schlatter, S., Dätwyler, D., Mazur, X., & Bailey, J. E. (1998). Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nature Biotechnology, 16, 468–472.

    Article  CAS  PubMed  Google Scholar 

  127. Mazur, X., Fussenegger, M., Renner, W. A., & Bailey, J. E. (1998). Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnology Progress, 14, 705–713.

    Article  CAS  PubMed  Google Scholar 

  128. Borth, N., Mattanovich, D., Kunert, R., & Katinger, H. (2005). Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnology Progress, 21, 106–111.

    Article  CAS  PubMed  Google Scholar 

  129. Underhill, M. F., Coley, C., Birch, J. R., Findlay, A., Kallmeier, R., Proud, C. G., & James, D. C. (2003). Engineering mRNA translation initiation to enhance transient gene expression in chinese hamster ovary cells. Biotechnology Progress, 19, 121–129.

    Article  CAS  PubMed  Google Scholar 

  130. Kwon, R.-J., Kim, S. K., Lee, S.-I., Hwang, S.-J., Lee, G. M., Kim, J.-S., & Seol, W. (2006). Artificial transcription factors increase production of recombinant antibodies in Chinese hamster ovary cells. Biotechnology Letters, 28, 9–15.

    Article  CAS  PubMed  Google Scholar 

  131. Ohya, T., Hayashi, T., Kiyama, E., Nishii, H., Miki, H., Kobayashi, K., Honda, K., Omasa, T., & Ohtake, H. (2008). Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnology and Bioengineering, 100, 317–324.

    Article  CAS  PubMed  Google Scholar 

  132. Dreesen, I. A. J., & Fussenegger, M. (2011). Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of chinese hamster ovary cells. Biotechnology and Bioengineering, 108, 853–866.

    Article  CAS  PubMed  Google Scholar 

  133. Pybus, L. P., Dean, G., West, N. R., Smith, A., Daramola, O., Field, R., Wilkinson, S. J., & James, D. C. (2014). Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells. Biotechnology and Bioengineering, 111, 372–385.

    Article  CAS  PubMed  Google Scholar 

  134. Ku, S. C. Y., Ng, D. T. W., Yap, M. G. S., & Chao, S.-H. (2008). Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnology and Bioengineering, 99, 155–164.

    Article  CAS  PubMed  Google Scholar 

  135. Berg, L., Kucharova, V., Bakke, I., Valla, S., & Brautaset, T. (2012). Exploring the 5’-UTR DNA region as a target for optimizing recombinant gene expression from the strong and inducible Pm promoter in Escherichia coli. Journal of Biotechnology, 158, 224–230.

    Article  CAS  PubMed  Google Scholar 

  136. da Silva, R. F., Baptista, D., Roth, A., Miteva, K., Burger, F., Vuilleumier, N., Carbone, F., Montecucco, F., Mach, F., & Brandt, K. J. (2020). Anti-apolipoprotein A-1 IgG influences neutrophil extracellular trap content at distinct regions of human carotid plaques. International Journal of Molecular Sciences, 21, 7721.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Eipper, B. A., Milgram, S. L., Husten, E. J., Yun, H. Y., & Mains, R. E. (1993). Peptidylglycine alpha-amidating monooxygenase: A multifunctional protein with catalytic, processing, and routing domains. Protein Sci. Publ. Protein Soc., 2, 489–497.

    Article  CAS  Google Scholar 

  138. Bragonzi, A., Distefano, G., Buckberry, L. D., Acerbis, G., Foglieni, C., Lamotte, D., Campi, G., Marc, A., Soria, M. R., Jenkins, N., & Monaco, L. (2000). A new Chinese hamster ovary cell line expressing α2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta BBA - Gen. Subj., 1474, 273–282.

    Article  CAS  Google Scholar 

  139. Fukuta, K., Yokomatsu, T., Abe, R., Asanagi, M., & Makino, T. (2000). Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconjugate Journal, 17, 895–904.

    Article  CAS  PubMed  Google Scholar 

  140. Fukuta, K., Abe, R., Yokomatsu, T., Kono, N., Asanagi, M., Omae, F., Minowa, M. T., Takeuchi, M., & Makino, T. (2000). Remodeling of sugar chain structures of human interferon-gamma. Glycobiology, 10, 421–430.

    Article  CAS  PubMed  Google Scholar 

  141. Tigges, M., & Fussenegger, M. (2006). Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metabolic Engineering, 8, 264–272.

    Article  CAS  PubMed  Google Scholar 

  142. Wong, N. S. C., Yap, M. G. S., & Wang, D. I. C. (2006). Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnology and Bioengineering, 93, 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  143. Son, Y.-D., Jeong, Y. T., Park, S.-Y., & Kim, J. H. (2011). Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology, 21, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  144. Ferrara, C., Brünker, P., Suter, T., Moser, S., Püntener, U., & Umaña, P. (2006). Modulation of therapeutic antibody effector functions by glycosylation engineering: Influence of Golgi enzyme localization domain and co-expression of heterologous β1, 4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Biotechnology and Bioengineering, 93, 851–861.

    Article  CAS  PubMed  Google Scholar 

  145. Cost, G. J., Freyvert, Y., Vafiadis, A., Santiago, Y., Miller, J. C., Rebar, E., Collingwood, T. N., Snowden, A., & Gregory, P. D. (2010). BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnology and Bioengineering, 105, 330–340.

    Article  CAS  PubMed  Google Scholar 

  146. Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K., & Satoh, M. (2004). Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnology and Bioengineering, 87, 614–622.

    Article  CAS  PubMed  Google Scholar 

  147. Yang, Z., Wang, S., Halim, A., Schulz, M. A., Frodin, M., Rahman, S. H., Vester-Christensen, M. B., Behrens, C., Kristensen, C., Vakhrushev, S. Y., Bennett, E. P., Wandall, H. H., & Clausen, H. (2015). Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 33, 842–844.

    Article  CAS  PubMed  Google Scholar 

  148. Imai-Nishiya, H., Mori, K., Inoue, M., Wakitani, M., Iida, S., Shitara, K., & Satoh, M. (2007). Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: A new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnology, 7, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pandey, P. K., Sharma, A. K., Rani, S., Mishra, G., Kandasamy, G., Patra, A. K., Rana, M., Sharma, A. K., Yadav, A. K., & Gupta, U. (2018). MCM-41 nanoparticles for brain delivery: better choline-esterase and amyloid formation inhibition with improved kinetics. ACS Biomaterials Science & Engineering, 4, 2860–2869.

    Article  CAS  Google Scholar 

  150. Metabolic flux ratio analysis by parallel 13C labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides - PubMed[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31843486/. [Accessed: 29-Apr-2023].

  151. Majors, B. S., Betenbaugh, M. J., Pederson, N. E., & Chiang, G. G. (2009). Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnology Progress, 25, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  152. Kim, N. S., & Lee, G. M. (2002). Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnology and Bioengineering, 78, 217–228.

    Article  CAS  PubMed  Google Scholar 

  153. Sung, Y. H., Lee, J. S., Park, S. H., Koo, J., & Lee, G. M. (2007). Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metabolic Engineering, 9, 452–464.

    Article  CAS  PubMed  Google Scholar 

  154. Yun, C. Y., Liu, S., Lim, S. F., Wang, T., Chung, B. Y. F., Jiat Teo, J., Chuan, K. H., Soon, A. S. C., Goh, K. S., & Song, Z. (2007). Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metabolic Engineering, 9, 406–418.

    Article  CAS  PubMed  Google Scholar 

  155. Doolan, P., Meleady, P., Barron, N., Henry, M., Gallagher, R., Gammell, P., Melville, M., Sinacore, M., McCarthy, K., Leonard, M., Charlebois, T., & Clynes, M. (2010). Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnology and Bioengineering, 106, 42–56.

    Article  CAS  PubMed  Google Scholar 

  156. Lee, K. H., Onitsuka, M., Honda, K., Ohtake, H., & Omasa, T. (2013). Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. Applied Microbiology and Biotechnology, 97, 5731–5741.

    Article  CAS  PubMed  Google Scholar 

  157. Ngantung, F. A., Miller, P. G., Brushett, F. R., Tang, G. L., & Wang, D. I. C. (2006). RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnology and Bioengineering, 95, 106–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SM thanks University Grant Commission (UGC) for Savitribai Jyotirao Phule Single Girl Child fellowship; Registration ID: UGC-22-GE-MAH-F-SJSGC-10886, RD thanks Council of Scientific and Industrial Research (CSIR); NO: 09/991(0059)/2019-EMR-I for doctoral fellowship.

Funding

University Grant Commission (UGC), Council of Scientific and Industrial Research (CSIR), Department of Science and Technology (DST), Science and Engineering Research Board (SERB), Department of Biotechnology (DBT).

Author information

Authors and Affiliations

Authors

Contributions

SM, RJ, & PD contributed to manuscript conception and preparation; SM, RD, & AH contributed to manuscript drafting and revision; RJ & PD contributed to proofreading and manuscript revision.

Corresponding authors

Correspondence to Prajakta Dandekar or Ratnesh Jain.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, S., Desai, R., Hans, A. et al. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01060-6

Keywords

Navigation