Skip to main content

Advertisement

Log in

Circ_0007422 Knockdown Inhibits Tumor Property and Immune Escape of Colorectal Cancer by Decreasing PDL1 Expression in a miR-1256-Dependent Manner

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a group of important molecules involved in the progression of various cancers, including colorectal cancer (CRC). Here, we aim to investigate the role and molecular mechanism of circ_0007422 in regulating CRC malignant progression. The expression levels of circ_0007422, miR-1256, and PDL1 were detected by qRT-PCR. Cell viability, proliferation, apoptosis, invasion, and self-replication ability were analyzed by CCK-8, EdU, flow cytometry, transwell, and spheroid formation experiments, respectively. Protein levels were determined by western blotting assay. CRC cells were co-cultured with CD8 + T cells, phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), or cytokine-induced killer (CIK) cells in vitro, and CD8 + T-cell apoptosis, IFN-γ and TNF-α levels, and survival rate of CRC cells were analyzed to reveal the role of circ_0007422 in antitumor immunity. The relationship between miR-1256 and circ_0007422 or PDL1 was identified by a dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was established to verify the function of circ_0007422 in tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect positive expression rates of Ki67, E-cadherin, N-cadherin, and PDL1 expression in primary tumors from CRC cells. Circ_0007422 was upregulated in CRC tissues and cells and its knockdown inhibited proliferation, invasion, self-replication ability, and immune escape and promoted apoptosis of CRC cells. Additionally, circ_0007422 bound to miR-1256, which was identified to target PDL1. MiR-1256 inhibition reversed the effects of circ_0007422 knockdown on the tumor properties and immune escape of CRC cells. Moreover, miR-1256 introduction interacted with PDL1 to suppress proliferation, invasion, self-replication ability, and immune escape and promote apoptosis of CRC cells. Further, circ_0007422 knockdown hampered tumorigenesis of CRC cells in vivo. Circ_0007422 knockdown inhibited tumor property and immune escape of colorectal cancer through the miR-1256/PDL1 pathway, providing a potential novel therapeutic target for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Li, J., Ma, X., Chakravarti, D., Shalapour, S., & DePinho, R. A. (2021). Genetic and biological hallmarks of colorectal cancer. Genes & Development, 35(11–12), 787–820.

    Article  CAS  Google Scholar 

  2. Grady, W. M., & Markowitz, S. D. (2015). The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Digestive Diseases and Sciences, 60(3), 762–772.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164.

  4. Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G. S., Barzi, A., & Jemal, A. (2017). Colorectal cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(3), 177–193.

  5. Ooki, A., Shinozaki, E., & Yamaguchi, K. (2021). Immunotherapy in colorectal cancer: Current and future strategies. Journal of the Anus, Rectum and Colon, 5(1), 11–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johdi, N. A., & Sukor, N. F. (2020). Colorectal cancer immunotherapy: Options and strategies. Frontiers in Immunology, 11, 1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  8. Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., Lichtor, T., Decker, W. K., Whelan, R. L., Kumara, H., et al. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 35(Suppl), S185-s198.

    Article  PubMed  Google Scholar 

  9. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY), 313(5795), 1960–1964.

    Article  CAS  Google Scholar 

  10. Pagès, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F. S., Bifulco, C., Lugli, A., Zlobec, I., Rau, T. T., Berger, M. D., et al. (2018). International validation of the consensus immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet (London, England), 391(10135), 2128–2139.

    Article  PubMed  Google Scholar 

  11. Grasso, C. S., & Giannakis, M. (2018). Genomic mechanisms of immune evasion in colorectal cancer: From discovery to clinical practice. Oncotarget, 9(73), 33743–33744.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, S., Gong, Y., Shen, Y., Liu, Y., Fu, Y., Dai, Y., Rehman, A. U., Tang, L., & Liu, H. (2021). INHBA is a novel mediator regulating cellular senescence and immune evasion in colorectal cancer. Journal of Cancer, 12(19), 5938–5949.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu, C. Y., & Kuo, H. C. (2019). The emerging roles and functions of circular RNAs and their generation. Journal of Biomedical Science, 26(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Enuka, Y., Lauriola, M., Feldman, M. E., Sas-Chen, A., Ulitsky, I., & Yarden, Y. (2016). Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Research, 44(3), 1370–1383.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, L., & Shan, G. (2021). CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Letters, 505, 49–57.

    Article  CAS  PubMed  Google Scholar 

  16. Akhbari, M. H., Zafari, Z., & Sheykhhasan, M. (2022). Competing endogenous RNAs (ceRNAs) in colorectal cancer: A review. Expert Reviews in Molecular Medicine, 24, e27.

    Article  CAS  PubMed  Google Scholar 

  17. Jian, X., He, H., Zhu, J., Zhang, Q., Zheng, Z., Liang, X., Chen, L., Yang, M., Peng, K., Zhang, Z., et al. (2020). Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Molecular Cancer, 19(1), 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C., Zhang, C., Liu, X., Sun, W., & Liu, H. (2023). Circular RNA PGPEP1 induces colorectal cancer malignancy and immune escape. Cell Cycle (Georgetown, Tex), 1–16.

  19. Wang, C. J., Zhu, C. C., Xu, J., Wang, M., Zhao, W. Y., Liu, Q., Zhao, G., & Zhang, Z. Z. (2019). The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Molecular Cancer, 18(1), 115.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun, D., Chen, L., Lv, H., Gao, Y., Liu, X., & Zhang, X. (2020). Circ_0058124 upregulates MAPK1 expression to promote proliferation, metastasis and metabolic abilities in thyroid cancer through sponging miR-940. OncoTargets and Therapy, 13, 1569–1581.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fan, A., Wang, B., Wang, X., Nie, Y., Fan, D., Zhao, X., & Lu, Y. (2021). Immunotherapy in colorectal cancer: Current achievements and future perspective. International Journal of Biological Sciences, 17(14), 3837–3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, Y., Luo, D., Shao, Y., Shan, Z., Liu, Q., Weng, J., He, W., Zhang, R., Li, Q., Wang, Z., et al. (2023). circCAPRIN1 interacts with STAT2 to promote tumor progression and lipid synthesis via upregulating ACC1 expression in colorectal cancer. Cancer Communications (London, England), 43(1), 100–122.

    Article  PubMed  Google Scholar 

  23. Li, Q., Li, K., Guo, Q., & Yang, T. (2023). CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis. Environmental Toxicology, 38(5), 981–989.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, Z., Hou, Z., Liu, W., Yu, Z., Liang, Z., & Chen, S. (2021). circ-keratin 6c promotes malignant progression and immune evasion of colorectal cancer through microRNA-485-3p/programmed cell death receptor ligand 1 axis. The Journal of Pharmacology and Experimental Therapeutics, 377(3), 358–367.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, S., Sun, J., Gu, M., Wang, G., & Wang, X. (2021). Circular RNA: A promising new star for the diagnosis and treatment of colorectal cancer. Cancer Medicine, 10(24), 8725–8740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y., Yujiao, W., Fang, W., Linhui, Y., Ziqi, G., Zhichen, W., Zirui, W., & Shengwang, W. (2020). The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biological Research, 53(1), 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balacescu, O., Sur, D., Cainap, C., Visan, S., Cruceriu, D., Manzat-Saplacan, R., Muresan, M. S., Balacescu, L., Lisencu, C., & Irimie, A. (2018). The impact of miRNA in colorectal cancer progression and its liver metastases. International journal of Molecular Sciences, 19(12).

  28. Zhang, N., Hu, X., Du, Y., & Du, J. (2021). The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie, 134, 111099.

  29. Wu, C., Ma, L., Wei, H., Nie, F., Ning, J., & Jiang, T. (2020). MiR-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3A. Human Cell, 33(3), 630–640.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W., Wan, X., Mu, Z., Li, F., Wang, L., Zhao, J., & Huang, X. (2018). MiR-1256 suppresses proliferation and migration of non-small cell lung cancer via regulating TCTN1. Oncology Letters, 16(2), 1708–1714.

    PubMed  PubMed Central  Google Scholar 

  31. Guan, X., Lan, T., Wang, Y., Cui, Y., Duan, J., & Xu, H. (2023). CircKRT14 upregulates E2F3 by interacting with miR-1256 to act as an oncogenic factor in esophageal cancer. Human & Experimental Toxicology, 42, 9603271231155092.

    Article  Google Scholar 

  32. Liu, Z. Y., Yang, L., & Chang, H. Y. (2018). Clinicopathologic and prognostic relevance of miR-1256 in colorectal cancer: A preliminary clinical study. European Review for Medical and Pharmacological Sciences, 22(22), 7704–7709.

    PubMed  Google Scholar 

  33. Akinleye, A., & Rasool, Z. (2019). Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. Journal of Hematology & Oncology, 12(1), 92.

    Article  Google Scholar 

  34. Li, X., Shao, C., Shi, Y., & Han, W. (2018). Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology & Oncology, 11(1), 31.

    Article  Google Scholar 

  35. Yang, K., Zhang, J., & Bao, C. (2021). Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer, 21(1), 933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, P., Huang, T., Zou, Q., Liu, D., Wang, Y., Tan, X., Wei, Y., & Qiu, H. (2019). FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. Journal of Immunology (Baltimore, Md : 1950), 202(10), 3065–3075.

  37. Chen, J., Li, G., Meng, H., Fan, Y., Song, Y., Wang, S., Zhu, F., Guo, C., Zhang, L., & Shi, Y. (2012). Upregulation of B7–H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunology, Immunotherapy: CII, 61(1), 101–108.

    Article  PubMed  Google Scholar 

  38. Wei, F., Zhang, T., Deng, S. C., Wei, J. C., Yang, P., Wang, Q., Chen, Z. P., Li, W. L., Chen, H. C., Hu, H., et al. (2019). PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Letters, 450, 1–13.

    Article  CAS  PubMed  Google Scholar 

  39. Ma, R., Liu, Y., Che, X., Li, C., Wen, T., Hou, K., & Qu, X. (2022). Nuclear PD-L1 promotes cell cycle progression of BRAF-mutated colorectal cancer by inhibiting THRAP3. Cancer Letters, 527, 127–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Nantong Municipal Commission of Health and Family Planning (QA2021010).

Nantong Municipal Commission of Health and Family Planning,QA2021010,Dian Yin

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Nantong First People’s Hospital and the Second Affiliated Hospital of Nantong University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Yang, L., Feng, X. et al. Circ_0007422 Knockdown Inhibits Tumor Property and Immune Escape of Colorectal Cancer by Decreasing PDL1 Expression in a miR-1256-Dependent Manner. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-023-01040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-01040-2

Keywords

Navigation