Skip to main content

Advertisement

Log in

Identification of Crucial Genes and Signaling Pathways in Alectinib-Resistant Lung Adenocarcinoma Using Bioinformatic Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, has been shown to be effective for patients with ALK-positive non-small cell lung cancer (NSCLC). However, alectinib resistance is a serious problem worldwide. To the best of our knowledge, little information is available on its molecular mechanisms using the Gene Expression Omnibus (GEO) database. In this study, the differentially expressed genes (DEGs) were selected from the gene expression profile GSE73167 between parental and alectinib-resistant human lung adenocarcinoma (LUAD) cell samples. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) annotation enrichment analyses were conducted using Database for Annotation, Visualization and Integrated Discovery (DAVID). The construction of protein–protein interaction (PPI) network was performed to visualize DEGs. The hub genes were extracted based on the analysis of the PPI network using plug-in cytoHubba of Cytoscape software. The functional roles of the key genes were investigated using Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham Cancer (UALCAN), Gene Set Enrichment Analysis (GSEA), and Tumor Immune Estimation Resource (TIMER) analysis. The networks of kinase, miRNA, and transcription-factor targets of SFTPD were explored using LinkedOmics. The drug sensitivity analysis of SFTPD was analyzed using the RNAactDrug database. Results showed a total of 144 DEGs were identified. Five hub genes were extracted, including mucin 5B (MUC5B), surfactant protein D (SFTPD), deleted in malignant brain tumors 1 (DMBT1), surfactant protein A2 (SFTPA2), and trefoil factor 3 (TFF3). The survival analysis using GEPIA displayed that low expression of SFTPD had a significantly negative effect on the prognosis of patients with LUAD. GSEA revealed that low expression of SFTPD was positively correlated with the pathways associated with drug resistance, such as DNA replication, cell cycle, drug metabolism, and DNA damage repair, including mismatch repair (MMR), base excision repair (BER), homologous recombination (HR), and nucleotide excision repair (NER). The SFTPD expression was negatively correlated with the drug sensitivity of alectinib according to RNAactDrug database. The expression of SFTPD was further validated in parental H3122 cells and alectinib-resistant H3122 cells by quantitative reverse transcription PCR (RT-qPCR). In conclusion, our study found that the five hub genes, especially low expression of SFTPD, are closely related to alectinib resistance in patients with LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data Availability

The data analyzed during the current study are derived from the following resources available in the public domain (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73167). The data used to support the findings of this study are included within the article.

Abbreviations

NSCLC:

Non-small cell lung cancer

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

EGFR:

Epidermal growth factor receptor

RET:

Rearranged during transfection

MET:

Mesenchymal-to-epithelial transition factor

KRAS:

Kirsten rat sarcoma 2 viral oncogene homolog

BRAF:

B-Raf proto-oncogene

ROS1:

ROS proto-oncogene 1

ALK:

Anaplastic lymphoma kinase

GEO:

Gene expression omnibus

DEGs:

Differentially expressed genes

FC:

Fold change

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

DAVID:

Database for annotation, visualization, and integrated discovery

PPI:

Protein–protein interaction

MCC:

Maximal clique centrality

MNC:

Maximal neighborhood component

EPC:

Edge percolated component

Degree:

Node connect degree

Closeness:

Node connect closeness

OS:

Overall survival

DFS:

Disease-free survival

GEPIA:

Gene expression profiling interactive analysis

UALCAN:

University of alabama at birmingham cancer

GSEA:

Gene set enrichment analysis

TIMER:

TUMOR immune estimation resource

RT-qPCR:

Quantitative reverse transcription PCR

H3122R:

H3122 alectinib-resistant

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

MUC5B:

Mucin 5B

SFTPD:

Surfactant protein D

DMBT1:

Deleted in malignant brain tumors 1

SFTPA2:

Surfactant protein A2

TFF3:

Trefoil factor 3

MMR:

Mismatch repair

BER:

Base excision repair

HR:

Homologous recombination

NER:

Nucleotide excision repair

NMU:

Neuromedin U

SFTP:

Surfactant protein

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7–33.

    PubMed  Google Scholar 

  2. American Society of Cancer Oncology, Lung Cancer - Non-Small Cell: Statistics. https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics, 2022.

  3. Relli, V., Trerotola, M., Guerra, E., & Alberti, S. (2019). Abandoning the notion of non-small cell lung cancer. Trends in Molecular Medicine, 25, 585–594.

    Article  PubMed  Google Scholar 

  4. Herbst, R. S., Morgensztern, D., & Boshoff, C. (2018). The biology and management of non-small cell lung cancer. Nature, 553, 446–454.

    Article  CAS  PubMed  Google Scholar 

  5. Devarakonda, S., Morgensztern, D., & Govindan, R. (2015). Genomic alterations in lung adenocarcinoma. The lancet Oncology, 16, e342–e351.

    Article  CAS  PubMed  Google Scholar 

  6. Reshetnyak, A. V., Rossi, P., Myasnikov, A. G., Sowaileh, M., Mohanty, J., Nourse, A., Miller, D. J., Lax, I., Schlessinger, J., & Kalodimos, C. G. (2021). Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature, 600, 153–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golding, B., Luu, A., Jones, R., & Viloria-Petit, A. M. (2018). The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Molecular Cancer, 17, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin, J. J., Riely, G. J., & Shaw, A. T. (2017). Targeting ALK: Precision medicine takes on drug resistance. Cancer Discovery, 7, 137–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gainor, J. F., Dardaei, L., Yoda, S., Friboulet, L., Leshchiner, I., Katayama, R., Dagogo-Jack, I., Gadgeel, S., Schultz, K., Singh, M., Chin, E., Parks, M., Lee, D., DiCecca, R. H., Lockerman, E., Huynh, T., Logan, J., Ritterhouse, L. L., Le, L. P., … Shaw, A. T. (2016). Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discovery, 6, 1118–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dagogo-Jack, I., Rooney, M., Lin, J. J., Nagy, R. J., Yeap, B. Y., Hubbeling, H., Chin, E., Ackil, J., Farago, A. F., Hata, A. N., Lennerz, J. K., Gainor, J. F., Lanman, R. B., & Shaw, A. T. (2019). Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clinical Cancer Research, 25, 6662–6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dagogo-Jack, I., Brannon, A. R., Ferris, L. A., Campbell, C. D., Lin, J. J., Schultz, K. R., Ackil, J., Stevens, S., Dardaei, L., Yoda, S., Hubbeling, H., Digumarthy, S. R., Riester, M., Hata, A. N., Sequist, L. V., Lennes, I. T., Iafrate, A. J., Heist, R. S., Azzoli, C. G., … Gainor, J. F. (2018). 2018 tracking the evolution of resistance to ALK tyrosine kinase inhibitors through longitudinal analysis of circulating tumor DNA. JCO Precision Oncology, 2, 1–14.

    Google Scholar 

  12. Isozaki, H., Ichihara, E., Takigawa, N., Ohashi, K., Ochi, N., Yasugi, M., Ninomiya, T., Yamane, H., Hotta, K., Sakai, K., Matsumoto, K., Hosokawa, S., Bessho, A., Sendo, T., Tanimoto, M., & Kiura, K. (2016). Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Research, 76, 1506–1516.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Research, 41, D991–D995.

    Article  CAS  PubMed  Google Scholar 

  14. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13.

    Article  PubMed  Google Scholar 

  15. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Y., Pan, Y., Cheng, C., Zheng, D., Zhang, Y., Gao, Z., Fu, F., Li, H., Zheng, S., Zhuge, L., Mao, H., Kuang, M., Tao, X., Peng, Y., Hu, H., Xiang, J., Li, Y., Sun, Y., & Chen, H. (2020). EGFR-mutant lung adenocarcinoma harboring co-mutational tumor suppressor genes predicts poor prognosis. Journal of Cancer Research and Clinical Oncology, 146, 1781–1789.

    Article  CAS  PubMed  Google Scholar 

  17. Wei, J., Wang, Y., Shi, K., & Wang, Y. (2020). Identification of core prognosis-related candidate genes in cervical cancer via integrated bioinformatical analysis. BioMed Research International, 2020, 8959210.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B., & Varambally, S. (2017). UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77, e108–e110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasaikar, S. V., Straub, P., Wang, J., & Zhang, B. (2018). LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Research, 46, D956–D963.

    Article  CAS  PubMed  Google Scholar 

  21. Dong, Q., Li, F., Xu, Y., Xiao, J., Xu, Y., Shang, D., Zhang, C., Yang, H., Tian, Z., Mi, K., Li, X., & Zhang, Y. (2020). RNAactDrug: A comprehensive database of RNAs associated with drug sensitivity from multi-omics data. Briefings in Bioinformatics, 21, 2167–2174.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, Y., Wang, H., Xiang, W., & Yi, D. (2022). EDEM2 is a diagnostic and prognostic biomarker and associated with immune infiltration in glioma: A comprehensive analysis. Frontiers in Oncology, 12, 1054012.

    Article  CAS  PubMed  Google Scholar 

  23. You, S., & Gao, L. (2018). Identification of NMU as a potential gene conferring alectinib resistance in non-small cell lung cancer based on bioinformatics analyses. Gene, 678, 137–142.

    Article  CAS  PubMed  Google Scholar 

  24. Harvey, K. F., Zhang, X., & Thomas, D. M. (2013). The Hippo pathway and human cancer. Nature Reviews Cancer, 13, 246–257.

    Article  CAS  PubMed  Google Scholar 

  25. Martin-Orozco, E., Sanchez-Fernandez, A., Ortiz-Parra, I., & Ayala-San Nicolas, M. (2019). WNT signaling in tumors: The way to evade drugs and immunity. Frontiers in Immunology, 10, 2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tripathi, N., Keshari, S., Shahi, P., Maurya, P., Bhattacharjee, A., Gupta, K., Talole, S., & Kumar, M. (2020). Human papillomavirus elevated genetic biomarker signature by statistical algorithm. Journal of Cellular Physiology, 235, 9922–9932.

    Article  CAS  PubMed  Google Scholar 

  27. Persson, A., Rust, K., Chang, D., Moxley, M., Longmore, W., & Crouch, E. (1988). CP4: A pneumocyte-derived collagenous surfactant-associated protein. Evidence for heterogeneity of collagenous surfactant proteins, Biochemistry, 27, 8576–8584.

    CAS  PubMed  Google Scholar 

  28. Voorhout, W. F., Veenendaal, T., Kuroki, Y., Ogasawara, Y., van Golde, L. M., & Geuze, H. J. (1992). Immunocytochemical localization of surfactant protein D (SP-D) in type II cells. Clara cells, and alveolar macrophages of rat lung, J Histochem Cytochem, 40, 1589–1597.

    CAS  PubMed  Google Scholar 

  29. Kuroki, Y., Takahashi, M., & Nishitani, C. (2007). Pulmonary collectins in innate immunity of the lung. Cellular Microbiology, 9, 1871–1879.

    Article  CAS  PubMed  Google Scholar 

  30. Wright, J. R. (2005). Immunoregulatory functions of surfactant proteins. Nature Reviews Immunology, 5, 58–68.

    Article  CAS  PubMed  Google Scholar 

  31. Crouch, E., Hartshorn, K., & Ofek, I. (2000). Collectins and pulmonary innate immunity. Immunological Reviews, 173, 52–65.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi, H., Kuroki, Y., Tanaka, H., Saito, T., Kurokawa, K., Chiba, H., Sagawa, A., Nagae, H., & Abe, S. (2000). Serum levels of surfactant proteins A and D are useful biomarkers for interstitial lung disease in patients with progressive systemic sclerosis. American Journal of Respiratory and Critical Care Medicine, 162, 258–263.

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi, H., Soda, H., Nakamura, Y., Takasu, M., Tomonaga, N., Nakano, H., Doi, S., Nakatomi, K., Nagashima, S., Takatani, H., Fukuda, M., Hayashi, T., Tsukamoto, K., & Kohno, S. (2011). Serum levels of surfactant protein D predict the anti-tumor activity of gefitinib in patients with advanced non-small cell lung cancer. Cancer Chemotherapy and Pharmacology, 67, 331–338.

    Article  CAS  PubMed  Google Scholar 

  34. Hasegawa, Y., Takahashi, M., Ariki, S., Asakawa, D., Tajiri, M., Wada, Y., Yamaguchi, Y., Nishitani, C., Takamiya, R., Saito, A., Uehara, Y., Hashimoto, J., Kurimura, Y., Takahashi, H., & Kuroki, Y. (2015). Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Oncogene, 34, 838–845.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The datasets generated in this study are available from GEO that provide free resources.

Funding

This work was supported by the Health Commission of Shanxi Province research project of 2023 (Grant No. 2023045).

Author information

Authors and Affiliations

Authors

Contributions

JHL and CGH: designed the research study. ZLL, YFF, and YM: wrote the manuscript. NM, DBL, and DLW: analyzed the data. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianhong Lian or Chengguang Hu.

Ethics declarations

Competing interests

NM, DBL, and DLW are employees of ChosenMed Technology. The remaining authors declare that they have no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable (GEO is an open database with ethical permission obtained for patients who participated. The data can be downloaded for free for research and publication. Open-source data are used in our research, so there are no ethical concerns).

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2023_973_MOESM1_ESM.tif

Supplementary file1 (TIF 11156 kb)—Supplementary Fig. 1 Co-expressed genes with SFTPD in LUAD. (a) Heat maps of the top 50 genes positively correlated with SFTPD in LUAD. (b) Heat maps of the top 50 genes negatively correlated with SFTPD in LUAD.Co-expressed genes with SFTPD in LUAD. (a) Heat maps of the top 50 genes positively correlated with SFTPD in LUAD. (b) Heat maps of the top 50 genes negatively correlated with SFTPD in LUAD.

Supplementary file2 (DOCX 23 kb)

Supplementary file3 (DOCX 61 kb)

Supplementary file4 (DOCX 21 kb)

Supplementary file5 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Fan, Y., Ma, Y. et al. Identification of Crucial Genes and Signaling Pathways in Alectinib-Resistant Lung Adenocarcinoma Using Bioinformatic Analysis. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00973-y

Keywords

Navigation