Skip to main content

Advertisement

Log in

FGL1 Promotes Tumor Immune Escape in Stomach Adenocarcinoma via the Notch Signaling Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Immune escape is the major reason for immunotherapy failure in stomach adenocarcinoma (STAD). We tried to reveal the underlying mechanism of FGL1 influencing STAD in this study. Bioinformatics analyses were conducted to analyze the expression of FGL1, the signaling pathways affected by FGL1, and the relation between FGL1 and immune cell infiltration. Quantitative real-time PCR (qRT-PCR), cell counting kit-8 assay, colony formation assay, flow cytometry and Transwell assay were adopted to analyze FGL1 expression, cell viability, cell proliferation, cell apoptosis, and cell invasion, respectively. Enzyme-linked immunosorbent assay, lactate dehydrogenase method, qRT-PCR and Western blot were adopted to reveal proinflammatory cytokine expression, cytotoxicity and mRNA and protein expression of the Notch signaling-related genes, respectively, after co-culture of STAD cells and CD8+T cells. Nude mice experiment was conducted to validate the results obtained above. FGL1 expressed highly in STAD and could activate the Notch signaling pathway, and it was negatively correlated with CD8+T cell infiltration. Cell experiments confirmed that high expression of FGL1 facilitated proliferation and hindered apoptosis of STAD cells. Knockdown of FGL1 could facilitate expression of pro-inflammatory factors and the cytotoxicity of CD8+T cells in co-culture system of STAD and CD8+ T cells. Knockdown of FGL1 could suppress the expression of the Notch signaling pathway-related genes, and the addition of Notch inhibitor proved that FGL1 promoted immune escape via the Notch signaling pathway. This study investigated the influence of FGL1 on STAD immune escape and demonstrated that FGL1 inhibited CD8+ T cell activation by activating the Notch signaling pathway and thus promoted tumor immune escape in STAD, providing a new potential diagnostic marker and therapeutic target for the immunotherapy of STAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Sung, H., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Yue, T., et al. (2021). Two similar signatures for predicting the prognosis and immunotherapy efficacy of stomach adenocarcinoma patients. Frontiers in Cell and Developmental Biology, 9, 704242. https://doi.org/10.3389/fcell.2021.704242

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, J., et al. (2022). ITGAL as a prognostic biomarker correlated with immune infiltrates in gastric cancer. Frontiers in Cell and Developmental Biology, 10, 808212. https://doi.org/10.3389/fcell.2022.808212

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennett, M. W., et al. (1999). Expression of Fas ligand by human gastric adenocarcinomas: A potential mechanism of immune escape in stomach cancer. Gut, 44, 156–162. https://doi.org/10.1136/gut.44.2.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bates, J. P., Derakhshandeh, R., Jones, L., & Webb, T. J. (2018). Mechanisms of immune evasion in breast cancer. BMC Cancer, 18, 556. https://doi.org/10.1186/s12885-018-4441-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Philip, M., & Schietinger, A. (2022). CD8(+) T cell differentiation and dysfunction in cancer. Nature Reviews Immunology, 22, 209–223. https://doi.org/10.1038/s41577-021-00574-3

    Article  CAS  PubMed  Google Scholar 

  7. Amado, T., et al. (2020). MicroRNA-181a regulates IFN-gamma expression in effector CD8(+) T cell differentiation. Journal of Molecular Medicine, 98, 309–320. https://doi.org/10.1007/s00109-019-01865-y

    Article  CAS  PubMed  Google Scholar 

  8. Ji, J., et al. (2018). Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. Cell Death and Disease, 9, 478. https://doi.org/10.1038/s41419-018-0528-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, J., et al. (2021). miR-148a-3p silences the CANX/MHC-I pathway and impairs CD8(+) T cell-mediated immune attack in colorectal cancer. The FASEB Journal, 35, e21776. https://doi.org/10.1096/fj.202100235R

    Article  CAS  PubMed  Google Scholar 

  10. Miliotis, C., & Slack, F. J. (2021). miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Letters, 518, 115–126. https://doi.org/10.1016/j.canlet.2021.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y., Qiao, H. X., Zhou, Y. T., Hong, L., & Chen, J. H. (2018). Fibrinogen-like-protein 1 promotes the invasion and metastasis of gastric cancer and is associated with poor prognosis. Molecular Medicine Reports, 18, 1465–1472. https://doi.org/10.3892/mmr.2018.9097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun, C., Gao, W., Liu, J., Cheng, H., & Hao, J. (2020). FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respiratory Research, 21, 210. https://doi.org/10.1186/s12931-020-01477-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Son, Y., Shin, N. R., Kim, S. H., Park, S. C., & Lee, H. J. (2021). Fibrinogen-like protein 1 modulates sorafenib resistance in human hepatocellular carcinoma cells. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22105330

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang, J., et al. (2022). Fibrinogen like protein-1 knockdown suppresses the proliferation and metastasis of TU-686 cells and sensitizes laryngeal cancer to LAG-3 blockade. Journal of International Medical Research, 50, 3000605221126874. https://doi.org/10.1177/03000605221126874

    Article  CAS  PubMed  Google Scholar 

  15. Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47, 14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  16. Yousefi, S. R., Alshamsi, H. A., Amiri, O., & Salavati-Niasari, M. (2021). Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. Journal of Molecular Liquids, 337, 116405. https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  17. Tang, X. Y., et al. (2022). The downregulation of fibrinogen-like protein 1 inhibits the proliferation of lung adenocarcinoma via regulating MYC-target genes. Transl Lung Cancer Res, 11, 404–419. https://doi.org/10.21037/tlcr-22-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chai, D., et al. (2022). Dual-targeting vaccine of FGL1/CAIX exhibits potent anti-tumor activity by activating DC-mediated multi-functional CD8 T cell immunity. Mol Ther Oncolytics, 24, 1–13. https://doi.org/10.1016/j.omto.2021.11.017

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  20. Subramanian, A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences USA, 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  Google Scholar 

  21. Luo, Y., Yu, X., Zhao, P., Huang, J., & Huang, X. (2022). Effects of Resveratrol on tight junction proteins and the Notch1 pathway in an HT-29 cell model of inflammation induced by lipopolysaccharide. Inflammation, 45, 2449–2464. https://doi.org/10.1007/s10753-022-01704-2

    Article  CAS  PubMed  Google Scholar 

  22. Flynn, J., & Gorry, P. (2019). Flow cytometry analysis to identify human CD8(+) T cells. Methods in Molecular Biology, 2048, 1–13. https://doi.org/10.1007/978-1-4939-9728-2_1

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X., et al. (2021). DLX5 promotes osteosarcoma progression via activation of the NOTCH signaling pathway. American Journal of Cancer Research, 11, 3354–3374.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Teng, F., et al. (2021). LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Molecular Oncology, 15, 1234–1255. https://doi.org/10.1002/1878-0261.12911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, J., et al. (2021). The role of fibrinogen-like proteins in cancer. International Journal of Biological Sciences, 17, 1079–1087. https://doi.org/10.7150/ijbs.56748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maruhashi, T., et al. (2022). Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity, 55, 912–924. https://doi.org/10.1016/j.immuni.2022.03.013

    Article  CAS  PubMed  Google Scholar 

  27. Yao, Q., et al. (2021). The m6A methyltransferase METTL14-mediated N6-methyladenosine modification of PTEN mRNA inhibits tumor growth and metastasis in stomach adenocarcinoma. Frontiers in Oncology, 11, 699749. https://doi.org/10.3389/fonc.2021.699749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qian, W., Zhao, M., Wang, R., & Li, H. (2021). Fibrinogen-like protein 1 (FGL1): The next immune checkpoint target. Journal of Hematology and Oncology, 14, 147. https://doi.org/10.1186/s13045-021-01161-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bie, F., et al. (2019). Loss of FGL1 induces epithelial-mesenchymal transition and angiogenesis in LKB1 mutant lung adenocarcinoma. International Journal of Oncology, 55, 697–707. https://doi.org/10.3892/ijo.2019.4838

    Article  CAS  PubMed  Google Scholar 

  30. Shi, A. P., et al. (2021). Immune checkpoint LAG3 and its ligand FGL1 in cancer. Frontiers in Immunology, 12, 785091. https://doi.org/10.3389/fimmu.2021.785091

    Article  CAS  PubMed  Google Scholar 

  31. Chiu, C. F., et al. (2021). Eicosapentaenoic acid inhibits KRAS mutant pancreatic cancer cell growth by suppressing hepassocin expression and STAT3 phosphorylation. Biomolecules. https://doi.org/10.3390/biom11030370

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin, W. W., et al. (2021). Fibrinogen-like protein 1 serves as an anti-inflammatory agent for collagen-induced arthritis therapy in mice. Frontiers in Immunology, 12, 767868. https://doi.org/10.3389/fimmu.2021.767868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, M., et al. (2020). Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8(+)T cells in hepatocellular carcinoma using multiplex quantitative analysis. Journal of Translational Medicine, 18, 306. https://doi.org/10.1186/s12967-020-02469-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krishna, B. M., et al. (2019). Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Letters, 461, 123–131. https://doi.org/10.1016/j.canlet.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tyagi, A., Sharma, A. K., & Damodaran, C. (2020). A review on notch signaling and colorectal cancer. Cells. https://doi.org/10.3390/cells9061549

    Article  PubMed  PubMed Central  Google Scholar 

  36. Akbarzadeh, M., Akbarzadeh, S., & Majidinia, M. (2020). Targeting notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathology, Research and Practice, 216, 153158. https://doi.org/10.1016/j.prp.2020.153158

    Article  CAS  PubMed  Google Scholar 

  37. Xue, D., Li, D., Dou, C., & Li, J. (2021). A Comprehensive bioinformatic analysis of NOTCH pathway involvement in stomach adenocarcinoma. Disease Markers, 2021, 4739868. https://doi.org/10.1155/2021/4739868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsukumo, S. I., & Yasutomo, K. (2018). Regulation of CD8(+) T Cells and antitumor immunity by notch signaling. Frontiers in Immunology, 9, 101. https://doi.org/10.3389/fimmu.2018.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by The Natural Science Foundation of Shaanxi Province (2020JM-630); and Shangluo City Science and Technology Research and Development Plan Project (2020-Z-0061).

Author information

Authors and Affiliations

Authors

Contributions

YZ participated in the design and drafted the manuscript, DL conducted the experiments and revised it, HL collected and assembled the data. All authors read the article and approved submitted version.

Corresponding author

Correspondence to Huirong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Ethics Approval and Consent to Participate

The study was approved by the ethics committee of Shangluo University. The methods were carried out in accordance with the approved guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liu, D. & Li, H. FGL1 Promotes Tumor Immune Escape in Stomach Adenocarcinoma via the Notch Signaling Pathway. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00928-3

Keywords

Navigation