Skip to main content

Advertisement

Log in

NRF2 Suppression Enhances the Susceptibility of Pancreatic Cancer Cells, Miapaca-2 to Paclitaxel

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pancreatic cancer is one of the most deadly diseases, with a very high metastasis and low survival rate. High levels of NRF2 have been detected in numerous malignancies, including head, neck, lung, and colon cancers, promoting the expansion and survival of cancer cells and chemical resistance to stressful conditions and affecting the response to treatment. To evaluate the possibility that modulation of NRF2 expression could be effective in treating pancreatic cancer cells, we explored the effect of knockdown of the NRF2 gene by NRF2-specific siRNA and its influence in combination with paclitaxel on pancreatic cancer cells. Miapaca-2 cell line, due to the high expression of the NRF2 gene, was selected for this study. Then, Miapaca-2 cells in different groups were treated with NRF2 siRNA and paclitaxel separately and in combination. After that, cell viability was measured by MTT assay and apoptosis induction by Annexin V-FITC/PI staining test. Cell cycle and autophagy were examined by flow cytometry, and cell migration was assessed by wound-healing assay. Finally, the expression of genes involved in apoptosis, Bax, Caspase-3, Caspase-9, and genes related to migration pathway, MMP-2, and MMP-9 in different groups were measured using qRT-PCR. Combined use of NRF2-specific siRNA with paclitaxel significantly reduced NRF2 gene expression in pancreatic cancer cells. NRF2 siRNA transfection significantly reduced cell viability. In addition, paclitaxel combination therapy with NRF2 siRNA strengthens the anti-tumor effects, such as inhibiting cell migration and provoking apoptosis, and autophagy and the cell cycle arrest in the G2 phase. NRF2 suppression augmented the expression of Bax, Caspase-3, and Caspase-9 genes and lowered the expression of Bcl-2, MMP-2, and MMP-9 genes, which play crucial roles in the pathways of apoptosis and cell migration, respectively. NRF2 siRNA enhances the susceptibility of Miapaca-2 cells to paclitaxel in pancreatic cancer cells. Thereby, suppressing NRF2 in combination with paclitaxel can be a new and efficacious treatment approach in treating pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding Author.

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424.

    PubMed  Google Scholar 

  2. Tonini, V., & Zanni, M. (2021). Pancreatic cancer in 2021: What you need to know to win. World Journal of Gastroenterology, 27(35), 5851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu, J.-X., et al. (2021). Pancreatic cancer: A review of epidemiology, trend, and risk factors. World Journal of Gastroenterology, 27(27), 4298.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goral, V. (2015). Pancreatic cancer: Pathogenesis and diagnosis. Asian Pacific Journal of Cancer Prevention, 16(14), 5619–5624.

    Article  PubMed  Google Scholar 

  5. Darmawan, G. & Simadibrata, M. (2011). Pancreatic cancer: Review of etiology, clinical features, diagnostic procedures, treatment and mesothelin role. Indonesian Association for the Study of the Liver.

  6. Dai, S., Mo, Y., Wang, Y., Xiang, B., Liao, Q., Zhou, M., Li, X., Li, Y., Xiong, W., Li, G., Guo, C., & Zeng, Z. (2020). Chronic stress promotes cancer development. Frontiers in Oncology, 10, 1492.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Teymouri, A., Mohammadi‐Yeganeh, S., Bayat, S., Rezaee, D., Ghavidel, A. A., & Ghanbarian, H. (2020). Non-viral siRNA delivery systems for pancreatic cancer therapy. Authorea Preprints.

  8. Singh, A., Trivedi, P., & Jain, N. K. (2018). Advances in siRNA delivery in cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 274–283.

    Article  CAS  PubMed  Google Scholar 

  9. Manda, G., Isvoranu, G., Comanescu, M. V., Manea, A., Butuner, B. D., & Korkmaz, K. S. (2015). The redox biology network in cancer pathophysiology and therapeutics. Redox Biology, 5, 347–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moi, P., Chan, K., Asunis, I., Cao, A., & Kan, Y. W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences USA, 91(21), 9926–9930.

    Article  CAS  Google Scholar 

  11. Zhang, D. D., & Chapman, E. (2020). The role of natural products in revealing NRF2 function. Natural Product Reports, 37(6), 797–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., & Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13(1), 76–86.

    Article  CAS  Google Scholar 

  14. Shelton, P., & Jaiswal, A. K. (2013). The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene? The FASEB Journal, 27(2), 414–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lister, A., Nedjadi, T., Kitteringham, N. R., Campbell, F., Costello, E., Lloyd, B., Copple, I. M., Williams, S., Owen, A., Neoptolemos, J. P., Goldring, C. E., & Park, B. K. (2011). Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Molecular Cancer, 10(1), 1–13.

    Article  Google Scholar 

  16. Chio, I. I. C., Jafarnejad, S. M., Ponz-Sarvise, M., Park, Y., Rivera, K., Palm, W., Wilson, J., Sangar, V., Hao, Y., Öhlund, D., Wright, K., Filippini, D., Lee, E. J., Da Silva, B., Schoepfer, C., Wilkinson, J. E., Buscaglia, J. M., DeNicola, G. M., Tiriac, H., … Tuveson, D. A. (2016). NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 166(4), 963–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharifi-Rad, J., Quispe, C., Patra, J. K., Singh, Y. D., Panda, M. K., Das, G., Adetunji, C. O., Michael, O. S., Sytar, O., Polito, L., Živković, J., Cruz-Martins, N., Klimek-Szczykutowicz, M., Ekiert, H., Choudhary, M. I., Ayatollahi, S. A., Tynybekov, B., Kobarfard, F., Muntean, A. C., … Calina, D. (2021). Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2021/3687700

    Article  PubMed  PubMed Central  Google Scholar 

  18. Igarashi, H., Ito, T., Hisano, T., Fujimori, N., Niina, Y., Yasuda, M., Kaku, T., Matsuo, S., Oono, T., Yoshinaga, M., Sakai, H., & Takayanagi, R. (2011). Paclitaxel-based chemotherapy for advanced pancreatic cancer after gemcitabine-based therapy failure: A case series of 5 patients. Case Reports in Oncology, 4(3), 534–541.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horwitz, S. (1994). Taxol (paclitaxel): Mechanisms of action. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 5, S3-6.

    PubMed  Google Scholar 

  20. Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., Stein, K. D., Alteri, R., & Jemal, A. (2016). Cancer treatment and survivorship statistics. CA: A Cancer Journal for Clinicians, 66(4), 271–289.

    PubMed  Google Scholar 

  21. Pereira, N. P., & Corrêa, J. R. (2018). Pancreatic cancer: Treatment approaches and trends. Journal of Cancer Metastasis and Treatment, 4, 30.

    Article  Google Scholar 

  22. Hidalgo, M. (2010). Pancreatic cancer. New England Journal of Medicine, 362(17), 1605–1617.

    Article  CAS  PubMed  Google Scholar 

  23. Zimta, A. A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S. M., Atanasov, A. G., & Berindan-Neagoe, I. (2019). The role of Nrf2 activity in cancer development and progression. Cancers, 11(11), 1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berberat, P. O., Dambrauskas, Z., Gulbinas, A., Giese, T., Giese, N., Künzli, B., Autschbach, F., Meuer, S., Büchler, M. W., & Friess, H. (2005). Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research, 11(10), 3790–3798.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, Y. J., Kim, W. I., Bae, J. H., Cho, M. K., Lee, S. H., Nam, H. S., Choi, I. H., & Cho, S. W. (2020). Overexpression of Nrf2 promotes colon cancer progression via ERK and AKT signaling pathways. Annals of Surgical Treatment and Research, 98(4), 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, M., Zhang, C., Zhang, L., Yang, Q., Zhou, S., Wen, Q., & Wang, J. (2015). Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer, 15(1), 1–12.

    Article  Google Scholar 

  27. Ma, J. Q., Tuersun, H., Jiao, S. J., Zheng, J. H., Xiao, J. B., & Hasim, A. (2015). Functional role of NRF2 in cervical carcinogenesis. PLoS ONE, 10(8), e0133876.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Esmaeili, M. A. (2016). Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells. Journal of Chemical Biology, 9(1), 41–52.

    Article  PubMed  Google Scholar 

  29. Pan, H., Wang, H., Zhu, L., Wang, X., Cong, Z., Sun, K., & Fan, Y. (2013). The involvement of Nrf2–ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurological Research, 35(1), 71–78.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, Y.-J., Lee, D. M., & Lee, S.-H. (2015). Nrf2 expression and apoptosis in quercetin-treated malignant mesothelioma cells. Molecules and Cells, 38(5), 416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lastra, D., Escoll, M., & Cuadrado, A. (2022). Transcription factor NRF2 participates in cell cycle progression at the level of G1/S and mitotic checkpoints. Antioxidants, 11(5), 946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi, Y. H., & Yoo, Y. H. (2012). Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncology Reports, 28(6), 2163–2169.

    Article  CAS  PubMed  Google Scholar 

  33. Li, X., Liang, M., Jiang, J., He, R., Wang, M., Guo, X., Shen, M., & Qin, R. (2018). Combined inhibition of autophagy and Nrf2 signaling augments bortezomib-induced apoptosis by increasing ROS production and ER stress in pancreatic cancer cells. International Journal of Biological Sciences, 14(10), 1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, L., Li, J., Ma, J., Chen, X., Chen, K., Jiang, Z., Zong, L., Yu, S., Li, X., Xu, Q., Lei, J., Duan, W., Li, W., Shan, T., Ma, Q., & Shen, X. (2016). The relevance of Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/3897250

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, J., Qin, X., Ma, W., Jia, S., Zhang, X., Yang, X., Pan, D., & Jin, F. (2021). Corilagin induces apoptosis and autophagy in NRF2-addicted U251 glioma cell line. Molecular Medicine Reports, 23(5), 1–10.

    Article  Google Scholar 

  36. Zhang, C., Wang, H. J., Bao, Q. C., Wang, L., Guo, T. K., Chen, W. L., Xu, L. L., Zhou, H. S., Bian, J. L., Yang, Y. R., Sun, H. P., Xu, X. L., & You, Q. D. (2016). NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget, 7(45), 73593.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumari, S., Badana, A. K., Mohan, G. M., ShailenderNaik, G., & Malla, R. (2017). Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines. Biomedicine & Pharmacotherapy, 91, 436–445.

    Article  CAS  Google Scholar 

  38. Payandeh, Z., PirpourTazehkand, A., Mansoori, B., Khaze, V., Asadi, M., Baradaran, B., & Samadi, N. (2021). The impact of Nrf2 silencing on Nrf2-PD-L1 axis to overcome oxaliplatin resistance and migration in colon cancer cells. Avicenna Journal of Medical Biotechnology, 13(3), 116.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang, X. Q., Yao, C., Bian, W. H., Chen, X., Xue, J. X., Zhu, Z. Y., Ying, Y., Xu, Y. L., & Wang, C. (2019). Effects of astragaloside IV on treatment of breast cancer cells execute possibly through regulation of Nrf2 via PI3K/AKT/mTOR signaling pathway. Food Science & Nutrition, 7(11), 3403–3413.

    Article  CAS  Google Scholar 

  40. Kong, F., Zhang, R., Zhao, X., Zheng, G., Wang, Z., & Wang, P. (2017). Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression. The Korean Journal of Physiology & Pharmacology, 21(5), 465–474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors would like to thank the Immunology Research Center of Tabriz University of Medical Sciences for their kind support during this study.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Khalaj-Kondori or Behzad Baradaran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

The research protocol was approved by the Ethics Committee of Tabriz University of Medical Sciences, Iran (IR.TBZMED.VCR.REC.1400.329).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riazi-Tabrizi, N., Khalaj-Kondori, M., Safaei, S. et al. NRF2 Suppression Enhances the Susceptibility of Pancreatic Cancer Cells, Miapaca-2 to Paclitaxel. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00872-2

Keywords

Navigation