Skip to main content

Advertisement

Log in

Effect of Photoperiod and White LED on Biomass Growth and Protein Production by Spirulina

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The constant increase in demand for food, valued bio-based compounds and energy demand has prompted the development of innovative and sustainable resources. New technologies and strategies must be implemented to boost microalgae biomass production, such as using different photoperiods along with (LED) light-emitting diodes to stimulate biomass production and boost profits. This work investigates the cultivation of blue-green microalgae (Spirulina) in a closed lab condition. The current study aims to boost Spirulina biomass production by creating ideal growth conditions using different photoperiods (12:12; 10:14; 14:10) light/dark with a constant light intensity of 2000 lx from White LED lights. The obtained optical density and protein content was highest for photoperiod 14L: 10D and values were 0.280 OD, with a protein content of 23.44 g/100 g, respectively. This study is a crucial first step in identifying the best photoperiod conditions to help S. platensis produce more biomass. The study results showed that increasing photoperiod for S. platensis farming can improve the quality and amount of biomass generated in those cultures without negatively affecting growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaushik, L., Sarangan, D., Govindarajan, D. K., Muthumanickam, S., Sivaramakrishnan, M., Kothandan, R., Masanamani, S., Nachimuthu, S., Mamane, H., & Kandaswamy, K. (2022). Image analysis reveals cellular fragmentation of Spirulina platensis upon treatment with heavy metal ions. Maejo International Journal of Energy and Environmental Communication, 4(1), 49–54.

    Article  Google Scholar 

  2. Trejo, M., Mejica, G. F. C., Saetang, N., & Lomlai, P. (2020). Exploration of fatty acid methyl esters (FAME) in cyanobacteria for a wide range of algae-based biofuels. Maejo International Journal of Energy and Environmental Communication, 2(3), 35–42.

    Article  Google Scholar 

  3. Manmai, N., Balakrishnan, D., Obey, G., Ito, N., Ramaraj, R., Unpaprom, Y., & Velu, G. (2022). Alkali pretreatment method of dairy wastewater based grown Arthrospira platensis for enzymatic degradation and bioethanol production. Fuel, 330, 125534.

    Article  CAS  Google Scholar 

  4. Ramaraj, R., Unpaprom, Y., & Dussadee, N. (2016). Potential evaluation of biogas production and upgrading through algae. International Journal of New Technology and Research, 2(3), 128–133.

    Google Scholar 

  5. Tsai, D. D. W., Ramaraj, R., & Chen, P. H. (2012). Growth condition study of algae function in ecosystem for CO2 bio-fixation. Journal of Photochemistry and Photobiology B: Biology, 107, 27–34.

    Article  CAS  PubMed  Google Scholar 

  6. Ramaraj, R., Tsai, D. D. W., & Chen, P. H. (2014). Freshwater microalgae niche of air carbon dioxide mitigation. Ecological Engineering, 68, 47–52.

    Article  Google Scholar 

  7. Chen, Y. P., Huang, Y. H., & Huang, H. C. (March, 2021). Different plastic-bag type photobioreactor for biomass production of Chlorella species. In IOP conference series: Materials science and engineering (Vol. 1113, No. 1, p. 012004). IOP Publishing

  8. Teo, C. L., Idris, A., Wahidin, S., & Lai, L. W. (2014). Effect of different light wavelength on the growth of marine microalgae. Jurnal Teknologi, 67(3), 97.

    Google Scholar 

  9. Vadiveloo, A., Moheimani, N. R., Cosgrove, J. J., Bahri, P. A., & Parlevliet, D. (2015). Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Research, 8, 121–127.

    Article  Google Scholar 

  10. Abu-Ghosh, S., Fixler, D., Dubinsky, Z., & Iluz, D. (2016). Flashing light in microalgae biotechnology. Bioresource Technology, 203, 357–363.

    Article  CAS  PubMed  Google Scholar 

  11. Katsuda, T., Shiraishi, H., Ishizu, N., Ranjbar, R., & Katoh, S. (2008). Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. Journal of Bioscience and Bioengineering, 105(3), 216–220.

    Article  CAS  PubMed  Google Scholar 

  12. Wijffels, R. H., Kruse, O., & Hellingwerf, K. J. (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current opinion in Biotechnology, 24(3), 405–413.

    Article  CAS  PubMed  Google Scholar 

  13. Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1), 306–310.

    Article  CAS  Google Scholar 

  14. Takache, H., Pruvost, J., & Marec, H. (2015). Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation. Algal Research, 8, 192–204.

    Article  Google Scholar 

  15. Klepacz-Smółka, A., Pietrzyk, D., Szeląg, R., Głuszcz, P., Daroch, M., Tang, J., & Ledakowicz, S. (2020). Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresource Technology, 313, 123700.

    Article  PubMed  Google Scholar 

  16. Low, S. S., Bong, K. X., Mubashir, M., Cheng, C. K., Lam, M. K., Lim, J. W., & Show, P. L. (2021). Microalgae cultivation in palm oil mill effluent (POME) treatment and biofuel production. Sustainability, 13(6), 3247.

    Article  CAS  Google Scholar 

  17. Polyzois, A., Kirilovsky, D., Dufat, T. H., & Michel, S. (2020). Effects of modification of light parameters on the production of cryptophycin, cyanotoxin with potent anticancer activity. Nostoc sp. Toxins, 12(12), 809.

    Article  CAS  PubMed  Google Scholar 

  18. Soni, R. A., Sudhakar, K., & Rana, R. S. (2016). Biophotovoltaics and biohydrogen through artificial photosynthesis: An overview. International Journal of Environment and Sustainable Development, 15(3), 313–325.

    Article  Google Scholar 

  19. Markou, G. (2014). Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Applied Biochemistry and Biotechnology, 172(5), 2758–2768.

    Article  CAS  PubMed  Google Scholar 

  20. Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., & Wijffels, R. H. (1999). Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. In Progress in Industrial Microbiology (Vol. 35, pp. 323–333). Elsevier.

  21. Putri, D. S., Sari, D. A., Astuti, S. P., & Wangiyana, I. G. A. S. (November, 2021). Effect of medium type, light intensity, and photoperiod on the growth rate of microalgae Chlorococcum sp. local isolate. In IOP conference series: Earth and environmental science (Vol. 913, No. 1, p. 012071). IOP Publishing

  22. Litchman, E., Steiner, D., & Bossard, P. (2003). Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology, 48(12), 2141–2148.

    Article  CAS  Google Scholar 

  23. Amini Khoeyi, Z., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae Chlorella Vulgaris. Aquaculture International, 20(1), 41–49.

    Article  CAS  Google Scholar 

  24. Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23(4), 721–726.

    Article  CAS  Google Scholar 

  25. Oh, S. H., Han, J. G., Kim, Y., Ha, J. H., Kim, S. S., Jeong, M. H., & Lee, H. Y. (2009). Lipid production in Porphyridium cruentum grown under different culture conditions. Journal of Bioscience and Bioengineering, 108(5), 429–434.

    Article  CAS  PubMed  Google Scholar 

  26. Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource technology, 129, 7–11.

    Article  CAS  PubMed  Google Scholar 

  27. Ruangsomboon, S. (2012). Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Technology, 109, 261–265.

    Article  CAS  PubMed  Google Scholar 

  28. Toro, J. E. (1989). The growth rate of two species of microalgae used in shellfish hatcheries cultured under two light regimes. Aquaculture Research, 20(3), 249–254.

    Article  Google Scholar 

  29. Sánchez-Saavedra, M. P., & Voltolina, D. (2002). Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures. Ciencias Marinas, 28(3), 273–279.

    Article  Google Scholar 

  30. Gonçalves, A. L., Pires, J. C., & Simoes, M. (2016). The effects of light and temperature on microalgal growth and nutrient removal: An experimental and mathematical approach. RSC Advances, 6(27), 22896–22907.

    Article  Google Scholar 

  31. Khajepour, F., Hosseini, S. A., Ghorbani Nasrabadi, R., & Markou, G. (2015). Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied Biochemistry and Biotechnology, 176(8), 2279–2289.

    Article  CAS  PubMed  Google Scholar 

  32. Foy, R. H., & Gibson, C. E. (1993). The influence of irradiance, photoperiod and temperature on the growth kinetics of three planktonic diatoms. European Journal of Phycology, 28(4), 203–212.

    Article  Google Scholar 

  33. Fábregas, J., Maseda, A., Domínguez, A., Ferreira, M., & Otero, A. (2002). Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light: Dark cycle. Biotechnology Letters, 24(20), 1699–1703.

    Article  Google Scholar 

  34. Postma, P. R., Suarez-Garcia, E., Safi, C., Yonathan, K., Olivieri, G., Barbosa, M. J., & Eppink, M. H. M. (2017). Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates. Bioresource Technology, 224, 670–679.

    Article  CAS  PubMed  Google Scholar 

  35. Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98(11), 2207–2211.

    Article  CAS  PubMed  Google Scholar 

  36. Rafiqul, I. M., Jalal, K. C. A., & Alam, M. Z. (2005). Environmental factors for optimization of Spirulina biomass in laboratory culture. Biotechnology, 4(1), 19–22.

    CAS  Google Scholar 

  37. Pandey, J. P., & Tiwari, A. (2010). Optimization of biomass production of Spirulina maxima. Journal of Algal Biomass Utilization, 1(2), 20–32.

    Google Scholar 

  38. Azov, Y. (1982). Effect of pH on inorganic carbon uptake in algal cultures. Applied and Environmental Microbiology, 43(6), 1300–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of microalgae and cyanobacteria: Effect of operating conditions on growth and biomass composition. Molecules, 25(12), 2834.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arias, D. M., Uggetti, E., García-Galán, M. J., & García, J. (2018). Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: Effect of nutrients limitation and photoperiods. New Biotechnology, 42, 1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate help and support from sustainable energy and sustainable resource (SRSE) lab for this study. We also thank the School of Renewable Energy, Maejo University for research grant “Project to Educate and Develop Graduate Potential in Renewable Energy in ASEAN Countries for Graduate Students of the School of Renewable Energy, Maejo University”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshprabu Ramaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, O., Unpaprom, Y. & Ramaraj, R. Effect of Photoperiod and White LED on Biomass Growth and Protein Production by Spirulina. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00787-y

Keywords

Navigation