Skip to main content

Advertisement

Log in

MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The ability to detect early metabolic changes in patients who have an increased mortality risk in the intensive care units (ICUs) could increase the likelihood of predicting recovery patterns and assist in disease management. Markers that can predict the disease progression of patients in the ICU might also be beneficial for improving their medical profile. Although biomarkers have been used in the ICU more frequently in recent years, the clinical use of most of them is limited. A wide range of biological processes are influenced by microRNAs (miRNAs) that modulate the translation and stability of specific mRNAs. Studies suggest that miRNAs may serve as a diagnostic and therapeutic biomarker in ICUs by profiling miRNA dysregulation in patient samples. To improve the predictive value of biomarkers for ICU patients, researchers have proposed both investigating miRNAs as novel biomarkers and combining them with other clinical biomarkers. Herein, we discuss recent approaches to the diagnosis and prognosis of patients admitted to an ICU, highlighting the use of miRNAs as novel and robust biomarkers for this purpose. In addition, we discuss emerging approaches to biomarker development and ways to improve the quality of biomarkers so that patients in ICU get the best outcomes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bassford, C. (2017). Decisions regarding admission to the ICU and international initiatives to improve the decision-making process. BioMed Central, 21, 1–3.

    Google Scholar 

  2. Marshall, J. C., Bosco, L., Adhikari, N. K., Connolly, B., Diaz, J. V., Dorman, T., . . . Pelosi, P. (2017). What is an intensive care unit? A report of the task force of the World Federation of Societies of Intensive and Critical Care Medicine. Journal of Critical Care, 37, 270–276.

  3. Nates, J. L., Nunnally, M., Kleinpell, R., Blosser, S., Goldner, J., Birriel, B., . . . Bailey, H. (2016). ICU admission, discharge, and triage guidelines: a framework to enhance clinical operations, development of institutional policies, and further research. Critical Care Medicine, 44(8), 1553–1602.

  4. Mercadante, S., Gregoretti, C., & Cortegiani, A. (2018). Palliative care in intensive care units: Why, where, what, who, when, how. BMC Anesthesiology, 18(1), 1–6.

    Article  Google Scholar 

  5. Garland, A., Olafson, K., Ramsey, C. D., Yogendran, M., & Fransoo, R. (2013). Epidemiology of critically ill patients in intensive care units: A population-based observational study. Critical Care, 17(5), 1–7.

    Article  Google Scholar 

  6. Pierrakos, C., & Vincent, J.-L. (2010). Sepsis biomarkers: A review. Critical Care, 14, 1–18.

    Article  Google Scholar 

  7. Schetz, M., & Van den Berghe, G. (2005). Do we have reliable biochemical markers to predict the outcome of critical illness? The International Journal of Artificial Organs, 28(12), 1197–1210.

    Article  CAS  PubMed  Google Scholar 

  8. Aduen, J., Bernstein, W. K., Khastgir, T., Miller, J., Kerzner, R., Bhatiani, A., . . . Chernow, B. (1994). The use and clinical importance of a substrate-specific electrode for rapid determination of blood lactate concentrations. Jama, 272(21), 1678–1685.

  9. Christ-Crain, M., Jaccard-Stolz, D., Bingisser, R., Gencay, M. M., Huber, P. R., Tamm, M., & Müller, B. (2004). Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: Cluster-randomised, single-blinded intervention trial. The Lancet, 363(9409), 600–607.

    Article  CAS  Google Scholar 

  10. Muñoz, B., Suárez-Sánchez, R., Hernández-Hernández, O., Franco-Cendejas, R., Cortés, H., & Magaña, J. J. (2019). From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns, 45(1), 16–31.

    Article  PubMed  Google Scholar 

  11. Fouda, E., ElrazekMidan, D. A., Ellaban, R., El-Kousy, S., & Arafat, E. (2021). The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochemistry and Biophysics Reports, 26, 100988. https://doi.org/10.1016/j.bbrep.2021.100988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fouda, E., Midan, D. A. E., Ellaban, R., El-Kousy, S., & Arafat, E. (2021). The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochemistry and Biophysics Reports, 26, 100988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell, 75(5), 843–854.

    Article  CAS  PubMed  Google Scholar 

  15. Lai, E. C. (2005). miRNAs: Whys and wherefores of miRNA-mediated regulation. Current Biology, 15(12), R458–R460.

    Article  CAS  PubMed  Google Scholar 

  16. Lai, E. C. (2015). Two decades of miRNA biology: Lessons and challenges. RNA, 21(4), 675–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chipman, L. B., & Pasquinelli, A. E. (2019). miRNA targeting: Growing beyond the seed. Trends in Genetics, 35(3), 215–222.

    Article  CAS  PubMed  Google Scholar 

  18. Saliminejad, K., KhorramKhorshid, H. R., SoleymaniFard, S., & Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465.

    Article  CAS  PubMed  Google Scholar 

  19. Zou, Y., Chiu, H., Domenger, D., Chuang, C.-F., & Chang, C. (2012). The lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Science Signaling, 5(228), 43–43.

    Article  Google Scholar 

  20. Ghafouri-Fard, S., Shoorei, H., & Taheri, M. (2020). miRNA profile in ovarian cancer. Experimental and Molecular Pathology, 113, 104381.

    Article  CAS  PubMed  Google Scholar 

  21. Leitão, A. L., & Enguita, F. J. (2022). A structural view of miRNA biogenesis and function. Non-coding RNA, 8(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23(20), 4051–4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romero-Cordoba, S. L., Salido-Guadarrama, I., Rodriguez-Dorantes, M., & Hidalgo-Miranda, A. (2014). miRNA biogenesis: Biological impact in the development of cancer. Cancer Biology & Therapy, 15(11), 1444–1455.

    Article  CAS  Google Scholar 

  25. Zeng, Y., & Cullen, B. R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Research, 32(16), 4776–4785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartel, D. P. (2018). Metazoan micrornas. Cell, 173(1), 20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desvignes, T., Batzel, P., Berezikov, E., Eilbeck, K., Eppig, J. T., McAndrews, M. S., . . . Postlethwait, J. (2015). miRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends in Genetics, 31(11), 613–626.

  28. Ali Syeda, Z., Langden, S. S. S., Munkhzul, C., Lee, M., & Song, S. J. (2020). Regulatory mechanism of MicroRNA expression in cancer. International Journal of Molecular Sciences, 21(5), 1723.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9(2), 102–114.

    Article  CAS  PubMed  Google Scholar 

  30. Szudy-Szczyrek, A., Ahern, S., Krawczyk, J., Szczyrek, M., & Hus, M. (2022). MiRNA as a potential target for multiple myeloma therapy-current knowledge and perspectives. Journal of Personalized Medicine, 12(9), 1428.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kamali, M. J., Salehi, M., Fatemi, S., Moradi, F., Khoshghiafeh, A., & Ahmadifard, M. (2022). Locked nucleic acid (LNA): A modern approach to cancer diagnosis and treatment. Experimental Cell Research, 423(1), 113442.

    Article  PubMed  Google Scholar 

  32. Woods, B. J., & Van Vactor, D. (2021). miRNA: Local guardians of presynaptic function in plasticity and disease. RNA Biology, 18(7), 1014–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350–355.

    Article  CAS  PubMed  Google Scholar 

  34. Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development. https://doi.org/10.1242/dev.02070

    Article  PubMed  Google Scholar 

  35. Fareh, M. (2019). Dynamics of MicroRNA Biogenesis. Biophysics of RNA-Protein Interactions: A Mechanistic View, 211–249.

  36. Hammond, S. M. (2005). Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Letters, 579(26), 5822–5829.

    Article  CAS  PubMed  Google Scholar 

  37. Meister, G., & Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature, 431(7006), 343–349.

    Article  CAS  PubMed  Google Scholar 

  38. Friedman, R. C., Farh, K.K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kobayashi, H., & Tomari, Y. (1859). RISC assembly coordination between small RNAs and argonaute proteins. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 1, 71–81.

    Google Scholar 

  40. Vos, P. D., Leedman, P. J., Filipovska, A., & Rackham, O. (2019). Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cellular and Molecular Life Sciences, 76(19), 3745–3752.

    Article  CAS  PubMed  Google Scholar 

  41. Vasudevan, S., Tong, Y., & Steitz, J. A. (2008). Cell cycle control of microRNA-mediated translation regulation. Cell Cycle, 7(11), 1545–1549.

    Article  CAS  PubMed  Google Scholar 

  42. Garcia, A., Dunoyer-Geindre, S., Fish, R. J., Neerman-Arbez, M., Reny, J.-L., & Fontana, P. (2021). Methods to investigate miRNA function: Focus on platelet reactivity. Thrombosis and Haemostasis, 121(04), 409–421.

    Article  PubMed  Google Scholar 

  43. Lee, S. K.-W., Teng, Y., Wong, H.-K., Ng, T.-K., Huang, L., Lei, P., . . . Lam, D. S.-C. (2011). MicroRNA-145 regulates human corneal epithelial differentiation. PloS one, 6(6), e21249.

  44. Kabekkodu, S. P., Shukla, V., Varghese, V. K., D’Souza, J., Chakrabarty, S., & Satyamoorthy, K. (2018). Clustered miRNAs and their role in biological functions and diseases. Biological Reviews, 93(4), 1955–1986.

    Article  PubMed  Google Scholar 

  45. Shalaby, S. M., El-Shal, A. S., Shoukry, A., Khedr, M. H., & Abdelraheim, N. (2016). Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome. IUBMB Life, 68(8), 673–682. https://doi.org/10.1002/iub.1529

    Article  CAS  PubMed  Google Scholar 

  46. Reid, G., Kirschner, M. B., & van Zandwijk, N. (2011). Circulating microRNAs: Association with disease and potential use as biomarkers. Critical Reviews in Oncology/Hematology, 80(2), 193–208.

    Article  PubMed  Google Scholar 

  47. Russo, F., Di Bella, S., Nigita, G., Macca, V., Lagana, A., Giugno, R., . . . Ferro, A. (2012). miRandola: extracellular circulating microRNAs database.

  48. Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature, 469(7330), 336–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rognoni, A., Cavallino, C., Lupi, A., Secco, G. G., Veia, A., Bacchini, S., . . . Bongo, A. S. (2014). Novel biomarkers in the diagnosis of acute coronary syndromes: the role of circulating miRNAs. Expert Review of Cardiovascular Therapy, 12(9), 1119–1124.

  50. Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schuetz, P., Aujesky, D., Mueller, C., & Mueller, B. (2015). Biomarker-guided personalised emergency medicine for all-hope for another hype? Swiss Medical Weekly, 145(w14079), w14079.

    PubMed  Google Scholar 

  52. Van Engelen, T. S., Wiersinga, W. J., Scicluna, B. P., & van der Poll, T. (2018). Biomarkers in sepsis. Critical Care Clinics, 34(1), 139–152.

    Article  PubMed  Google Scholar 

  53. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., . . . Coopersmith, C. M. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama, 315(8), 801–810.

  54. Bloos, F., & Reinhart, K. (2014). Rapid diagnosis of sepsis. Virulence, 5(1), 154–160.

    Article  PubMed  Google Scholar 

  55. Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. New England Journal of Medicine, 340(6), 448–454.

    Article  CAS  PubMed  Google Scholar 

  56. Barati, M., Alinejad, F., Bahar, M. A., Tabrisi, M. S., Shamshiri, A. R., & Karimi, H. (2008). Comparison of WBC, ESR, CRP and PCT serum levels in septic and non-septic burn cases. Burns, 34(6), 770–774.

    Article  PubMed  Google Scholar 

  57. Povoa, P., Coelho, L., Almeida, E., Fernandes, A., Mealha, R., Moreira, P., & Sabino, H. (2005). C-reactive protein as a marker of infection in critically ill patients. Clinical Microbiology and Infection, 11(2), 101–108.

    Article  CAS  PubMed  Google Scholar 

  58. Schmit, X., & Vincent, J. L. (2008). The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection, 36(3), 213–219.

    Article  CAS  PubMed  Google Scholar 

  59. Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C. M., French, C., . . . Prescott, H. C. (2021). Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Medicine, 47(11), 1181–1247.

  60. Müller, B., White, J. C., Nylén, E. S., Snider, R. H., Becker, K. L., & Habener, J. F. (2001). Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. The Journal of Clinical Endocrinology & Metabolism, 86(1), 396–404.

    Google Scholar 

  61. Lin, K.-H., Wang, F.-L., Wu, M.-S., Jiang, B.-Y., Kao, W.-L., Chao, H.-Y., . . . Lee, C.-C. (2014). Serum procalcitonin and C-reactive protein levels as markers of bacterial infection in patients with liver cirrhosis: a systematic review and meta-analysis. Diagnostic Microbiology And Infectious Disease, 80(1), 72–78.

  62. Kopterides, P., Siempos, I. I., Tsangaris, I., Tsantes, A., & Armaganidis, A. (2010). Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: A systematic review and meta-analysis of randomized controlled trials. Critical Care Medicine, 38(11), 2229–2241.

    Article  PubMed  Google Scholar 

  63. Harbarth, S., Holeckova, K., Froidevaux, C., Pittet, D., Ricou, B., Grau, G. E., . . . Network, G. S. (2001). Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. American Journal of Respiratory and Critical Care Medicine, 164(3), 396–402.

  64. Pathan, N., Hemingway, C. A., Alizadeh, A. A., Stephens, A. C., Boldrick, J. C., Oragui, E. E., . . . O'Gara, P. (2004). Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. The Lancet, 363(9404), 203–209.

  65. Selberg, O., Hecker, H., Martin, M., Klos, A., Bautsch, W., & Köhl, J. (2000). Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Critical Care Medicine, 28(8), 2793–2798.

    Article  CAS  PubMed  Google Scholar 

  66. Jawa, R. S., Anillo, S., Huntoon, K., Baumann, H., & Kulaylat, M. (2011). Analytic review: Interleukin-6 in surgery, trauma, and critical care: Part I: Basic science. Journal of Intensive Care Medicine, 26(1), 3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jawa, R. S., Anillo, S., Huntoon, K., Baumann, H., & Kulaylat, M. (2011). Interleukin-6 in surgery, trauma, and critical care part II: Clinical implications. Journal of Intensive Care Medicine, 26(2), 73–87.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zheng, X., Zhang, Y., Lin, S., Li, Y., Hua, Y., & Zhou, K. (2023). Diagnostic significance of microRNAs in sepsis. PLoS ONE, 18(2), e0279726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roderburg, C., Luedde, M., Vargas Cardenas, D., Vucur, M., Scholten, D., Frey, N., . . . Luedde, T. (2013). Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PloS one, 8(1), e54612.

  70. Tacke, F., Roderburg, C., Benz, F., Cardenas, D. V., Luedde, M., Hippe, H.-J., . . . Koch, A. (2014). Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Critical care medicine, 42(5), 1096–1104.

  71. Tacke, F., Roderburg, C., Benz, F., Cardenas, D. V., Luedde, M., Hippe, H. J., . . . Luedde, T. (2014). Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med, 42(5), 1096–1104. https://doi.org/10.1097/ccm.0000000000000131

  72. Osca-Verdegal, R., Beltrán-García, J., Pallardó, F. V., & García-Giménez, J. L. (2021). Role of microRNAs as biomarkers in sepsis-associated encephalopathy. Molecular Neurobiology, 58(9), 4682–4693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lan, H., Lu, H., Wang, X., & Jin, H. (2015). MicroRNAs as potential biomarkers in cancer: opportunities and challenges. BioMed Research International. https://doi.org/10.1155/2015/125094

    Article  PubMed  PubMed Central  Google Scholar 

  74. Acunzo, M., Romano, G., Wernicke, D., & Croce, C. M. (2015). MicroRNA and cancer–a brief overview. Advances in Biological Regulation, 57, 1–9.

    Article  CAS  PubMed  Google Scholar 

  75. Condrat, C. E., Thompson, D. C., Barbu, M. G., Bugnar, O. L., Boboc, A., Cretoiu, D., . . . Voinea, S. C. (2020). miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells, 9(2), 276.

  76. Condrat, C. E., Thompson, D. C., Barbu, M. G., Bugnar, O. L., Boboc, A., Cretoiu, D., . . . Voinea, S. C. (2020). miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells, https://doi.org/10.3390/cells9020276

  77. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, 1–11.

    Article  Google Scholar 

  78. Válóczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., & Havelda, Z. (2004). Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research, 32(22), e175–e175.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., & Plasterk, R. H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods, 3(1), 27–29.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, J., Chen, J., Chang, P., LeBlanc, A., Li, D., Abbruzzesse, J. L., . . . Sen, S. (2009). MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of DiseasePlasma MicroRNAs in pancreatic cancer. Cancer prevention research, 2(9), 807–813.

  81. Thomson, J. M., Parker, J., Perou, C. M., & Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nature Methods, 1(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, J., Raimondo, M., Guha, S., Chen, J., Diao, L., Dong, X., . . . Woodward, T. A. (2014). Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer. Journal of Cancer, 5(8), 696.

  83. Wang, J., Paris, P. L., Chen, J., Ngo, V., Yao, H., Frazier, M. L., . . . Mathy, C. (2015). Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer letters, 356(2), 404–409.

  84. Solé, C., Moliné, T., Vidal, M., Ordi-Ros, J., & Cortés-Hernández, J. (2019). An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells, 8(8), 773.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shen, X., Zhang, J., Huang, Y., Tong, J., Zhang, L., Zhang, Z., . . . Qiu, Y. (2020). Accuracy of circulating microRNAs in diagnosis of sepsis: a systematic review and meta-analysis. Journal of Intensive Care, 8(1), 1–10.

  86. Méndez Hernández, R., & Ramasco Rueda, F. (2023). Biomarkers as prognostic predictors and therapeutic guide in critically Ill Patients: Clinical evidence. Journal of Personalized Medicine, 13(2), 333.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Heilmann, E., Gregoriano, C., & Schuetz, P. (2019). Biomarkers of infection: Are they useful in the ICU? Seminars in Respiratory and Critical Care Medicine, 40(4), 465–475. https://doi.org/10.1055/s-0039-1696689

    Article  PubMed  PubMed Central  Google Scholar 

  88. Di Raimondo, D., Pirera, E., Rizzo, G., Simonetta, I., Musiari, G., & Tuttolomondo, A. (2022). Non-coding RNA networks as potential novel biomarker and therapeutic target for sepsis and sepsis-related multi-organ failure. Diagnostics (Basel). https://doi.org/10.3390/diagnostics12061355

    Article  PubMed  Google Scholar 

  89. Neudecker, V., Brodsky, K. S., Kreth, S., Ginde, A. A., & Eltzschig, H. K. (2016). Emerging roles for MicroRNAs in perioperative medicine. Anesthesiology, 124(2), 489–506. https://doi.org/10.1097/aln.0000000000000969

    Article  CAS  PubMed  Google Scholar 

  90. Pogribny, I. P. (2018). MicroRNAs as biomarkers for clinical studies. Experimental Biology and Medicine (Maywood), 243(3), 283–290. https://doi.org/10.1177/1535370217731291

    Article  CAS  Google Scholar 

  91. Heffernan, A. J., & Denny, K. J. (2021). Host diagnostic biomarkers of infection in the ICU: Where are we and where are we going? Current Infectious Disease Reports, 23(4), 4. https://doi.org/10.1007/s11908-021-00747-0

    Article  PubMed  PubMed Central  Google Scholar 

  92. Roderburg, C., Koch, A., Benz, F., Vucur, M., Spehlmann, M., Loosen, S. H., . . . Luedde, T. (2019). Serum Levels of miR-143 Predict Survival in Critically Ill Patients. Disease Markers, 2019, 4850472. https://doi.org/10.1155/2019/4850472

  93. Zhan, X. H., Xu, Q. Y., Tian, R., Yan, H., Zhang, M., Wu, J., . . . He, J. (2017). MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget, 8(33), 54788–54798. https://doi.org/10.18632/oncotarget.18510

  94. Bai, H., & Wu, S. (2019). miR-451: A novel biomarker and potential therapeutic target for cancer. Oncotargets and Therapy, 12, 11069–11082. https://doi.org/10.2147/ott.s230963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, P., Zhao, Y., Li, J., Liu, C., Zhu, L., Zhang, J., . . . Sun, H.-X. (2021). Downregulated miR-451a as a feature of the plasma cfRNA landscape reveals regulatory networks of IL-6/IL-6R-associated cytokine storms in COVID-19 patients. Cellular & Molecular Immunology, 18(4), 1064–1066. https://doi.org/10.1038/s41423-021-00652-5

  96. El-Hefnawy, S. M., Mostafa, R. G., El Zayat, R. S., Elfeshawy, E. M., Abd El-Bari, H. M., & El-MonemEllaithy, M. A. (2021). Biochemical and molecular study on serum miRNA-16a and miRNA- 451 as neonatal sepsis biomarkers. Biochemistry Biophysics Reports, 25, 100915. https://doi.org/10.1016/j.bbrep.2021.100915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, Q., Ge, Y. L., Li, M., Fang, X. Z., Yuan, Y. P., Liang, L., & Huang, S. Q. (2017). miR-127 contributes to ventilator-induced lung injury. Molecular Medicine Reports, 16(4), 4119–4126. https://doi.org/10.3892/mmr.2017.7109

    Article  CAS  PubMed  Google Scholar 

  98. Santovito, D., Mezzetti, A., & Cipollone, F. (2012). MicroRNAs and atherosclerosis: New actors for an old movie. Nutrition, Metabolism, and Cardiovascular Diseases, 22(11), 937–943. https://doi.org/10.1016/j.numecd.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  99. Gao, C., & Chen, H. (2022). Correlation of serum miR-127 level with severity and prognosis of sepsis. American Journal of Translational Research, 14(11), 7994–8001.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. How, C. K., Hou, S. K., Shih, H. C., Huang, M. S., Chiou, S. H., Lee, C. H., & Juan, C. C. (2015). Expression profile of MicroRNAs in gram-negative bacterial sepsis. Shock, 43(2), 121–127. https://doi.org/10.1097/shk.0000000000000282

    Article  CAS  PubMed  Google Scholar 

  101. Vasilescu, C., Rossi, S., Shimizu, M., Tudor, S., Veronese, A., Ferracin, M., . . . Calin, G. A. (2009). MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PloS one, 4(10), e7405. https://doi.org/10.1371/journal.pone.0007405

  102. Zhou, J., Chaudhry, H., Zhong, Y., Ali, M. M., Perkins, L. A., Owens, W. B., . . . Nagarkatti, M. (2015). Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine, 71(1), 89–100. https://doi.org/10.1016/j.cyto.2014.09.003

  103. Lambden, S., Laterre, P. F., Levy, M. M., & Francois, B. (2019). The SOFA score—development, utility and challenges of accurate assessment in clinical trials. Critical Care, 23(1), 374. https://doi.org/10.1186/s13054-019-2663-7

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang, J., Liao, Y., Dai, Y., Hu, L., & Cai, Y. (2022). Prediction of prognosis in sepsis patients by the SOFA score combined with miR-150. Advances in Clinical and Experimental Medicine, 31(1), 9–15. https://doi.org/10.17219/acem/142536

    Article  PubMed  Google Scholar 

  105. Ye, R., Lin, Q., Xiao, W., Mao, L., Zhang, P., Zhou, L., . . . Deng, L. (2023). miR-150–5p in neutrophil-derived extracellular vesicles associated with sepsis-induced cardiomyopathy in septic patients. Cell Death Discovery, 9(1), 19. https://doi.org/10.1038/s41420-023-01328-x

  106. Li, L. L., Dai, B., Sun, Y. H., & Zhang, T. T. (2020). Monocytes Undergo functional reprogramming to generate immunosuppression through HIF-1α signaling pathway in the late phase of sepsis. Mediators of Inflammation, 2020, 4235909. https://doi.org/10.1155/2020/4235909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, H. J., Zhang, P. J., Chen, W. J., Feng, D., Jia, Y. H., & Xie, L. X. (2012). Four serum microRNAs identified as diagnostic biomarkers of sepsis. Journal of Trauma and Acute Care Surgery, 73(4), 850–854. https://doi.org/10.1097/TA.0b013e31825a7560

    Article  CAS  PubMed  Google Scholar 

  108. Karam, R. A., Zidan, H. E., Karam, N. A., Abdel Rahman, D. M., & El-Seifi, O. S. (2019). Diagnostic and prognostic significance of serum miRNA-146-a expression in Egyptian children with sepsis in a pediatric intensive care unit. The Journal of Gene Medicine, 21(11), e3128. https://doi.org/10.1002/jgm.3128

    Article  CAS  PubMed  Google Scholar 

  109. Yu, H., Lu, Y., Li, Z., & Wang, Q. (2014). microRNA-133: Expression, function and therapeutic potential in muscle diseases and cancer. Current Drug Targets, 15(9), 817–828. https://doi.org/10.2174/1389450115666140627104151

    Article  CAS  PubMed  Google Scholar 

  110. Chang, L., Zhang, D., Shi, H., Bian, Y., & Guo, R. (2017). MiR-143 inhibits endometrial cancer cell proliferation and metastasis by targeting MAPK1. Oncotarget, 8(48), 84384–84395. https://doi.org/10.18632/oncotarget.21037

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kanaan, Z., Rai, S. N., Eichenberger, M. R., Barnes, C., Dworkin, A. M., Weller, C., . . . Galandiuk, S. (2012). Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Human Mutation, 33(3), 551–560. https://doi.org/10.1002/humu.22021

  112. Pekow, J. R., Dougherty, U., Mustafi, R., Zhu, H., Kocherginsky, M., Rubin, D. T., . . . Bissonnette, M. (2012). miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflammatory Bowel Diseases, 18(1), 94–100. https://doi.org/10.1002/ibd.21742

  113. Tacke, F., Spehlmann, M. E., Vucur, M., Benz, F., Luedde, M., Cardenas, D. V., . . . Luedde, T. (2019). miR-155 Predicts Long-Term Mortality in Critically Ill Patients Younger than 65 Years. Mediators Inflamm, 2019, 6714080. https://doi.org/10.1155/2019/6714080

  114. Bloch, S. A., Lee, J. Y., Syburra, T., Rosendahl, U., Griffiths, M. J., Kemp, P. R., & Polkey, M. I. (2015). Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax, 70(3), 219–228. https://doi.org/10.1136/thoraxjnl-2014-206225

    Article  CAS  PubMed  Google Scholar 

  115. Bloch, S. A. A., Donaldson, A. V. J., Lewis, A., Banya, W. A. S., Polkey, M. I., Griffiths, M. J. D., & Kemp, P. R. (2015). MiR-181a: A potential biomarker of acute muscle wasting following elective high-risk cardiothoracic surgery. Critical Care, 19(1), 147. https://doi.org/10.1186/s13054-015-0853-5

    Article  PubMed  PubMed Central  Google Scholar 

  116. Paul, R., Lee, J., Donaldson, A. V., Connolly, M., Sharif, M., Natanek, S. A., . . . Kemp, P. R. (2018). miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. Journal of Cachexia, Sarcopenia and Muscle, 9(1), 119–128. https://doi.org/10.1002/jcsm.12236

  117. Connolly, M., Paul, R., Farre-Garros, R., Natanek, S. A., Bloch, S., Lee, J., . . . Kemp, P. R. (2018). miR-424–5p reduces ribosomal RNA and protein synthesis in muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 9(2), 400–416. https://doi.org/10.1002/jcsm.12266

  118. Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. American Journal of Clinical Nutrition, 84(3), 475–482. https://doi.org/10.1093/ajcn/84.3.475

    Article  CAS  PubMed  Google Scholar 

  119. Vanzi, F., Vladimirov, S., Knudsen, C. R., Goldman, Y. E., & Cooperman, B. S. (2003). Protein synthesis by single ribosomes. RNA, 9(10), 1174–1179. https://doi.org/10.1261/rna.5800303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garros, R. F., Paul, R., Connolly, M., Lewis, A., Garfield, B. E., Natanek, S. A., . . . Kemp, P. R. (2017). MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-acquired Weakness. American Journal of Respiratory and Critical Care Medicine, 196(11), 1422–1433. https://doi.org/10.1164/rccm.201701-0101OC

  121. de Gonzalo-Calvo, D., Benítez, I. D., Pinilla, L., Carratalá, A., Moncusí-Moix, A., Gort-Paniello, C., . . . Barbé, F. (2021). Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Translational Research, 236, 147–159. https://doi.org/10.1016/j.trsl.2021.05.004

  122. Gupta, R. K., Marks, M., Samuels, T. H. A., Luintel, A., Rampling, T., Chowdhury, H., . . . Noursadeghi, M. (2020). Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: an observational cohort study. European Respiratory Journal, 56(6). https://doi.org/10.1183/13993003.03498-2020

  123. de Gonzalo-Calvo, D., Vea, A., Bär, C., Fiedler, J., Couch, L. S., Brotons, C., . . . Thum, T. (2019). Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: A novel tool for personalized medicine? European Heart Journal, 40(20), 1643–1650. https://doi.org/10.1093/eurheartj/ehy234

  124. Pinacchio, C., Scordio, M., Santinelli, L., Frasca, F., Sorrentino, L., Bitossi, C., . . . Scagnolari, C. (2022). Analysis of serum microRNAs and rs2910164 GC single-nucleotide polymorphism of miRNA-146a in COVID-19 patients. Journal of Immunoassay and Immunochemistry, 43(4), 347–364. https://doi.org/10.1080/15321819.2022.2035394

  125. Giannella, A., Riccetti, S., Sinigaglia, A., Piubelli, C., Razzaboni, E., Di Battista, P., . . . Barzon, L. (2022). Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Frontiers in Immunology, 13, 968991. https://doi.org/10.3389/fimmu.2022.968991

  126. Gutmann, C., Khamina, K., Theofilatos, K., Diendorfer, A. B., Burnap, S. A., Nabeebaccus, A., . . . Mayr, M. (2022). Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovascular Research, 118(2), 461–474. https://doi.org/10.1093/cvr/cvab338

  127. Garg, A., Seeliger, B., Derda, A. A., Xiao, K., Gietz, A., Scherf, K., . . . Thum, T. (2021). Circulating cardiovascular microRNAs in critically ill COVID-19 patients. European Journal of Heart Failure, 23(3), 468–475. https://doi.org/10.1002/ejhf.2096

  128. Madè, A., Greco, S., Vausort, M., Miliotis, M., Schordan, E., Baksi, S., . . . Martelli, F. (2022). Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality. Scientific Reports, 12(1), 20048. https://doi.org/10.1038/s41598-022-23922-2

  129. Giuliani, A., Matacchione, G., Ramini, D., Di Rosa, M., Bonfigli, A. R., Sabbatinelli, J., . . . Olivieri, F. (2022). Circulating miR-320b and miR-483–5p levels are associated with COVID-19 in-hospital mortality. Mechanisms of Ageing and Development, 202, 111636. https://doi.org/10.1016/j.mad.2022.111636

  130. Li, Q., Wu, T., & Li, S. (2021). MiR-181b serves as diagnosis and prognosis biomarker in severe community-acquired pneumonia. Genetics Molecular Biology, 44(3), e20200431. https://doi.org/10.1590/1678-4685-gmb-2020-0431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, B., Yang, J., Dai, Y., & Xiong, L. (2022). Combination of the BISAP score and miR-155 is applied in predicting the severity of acute pancreatitis. International Journal of General Medicine, 15, 7467–7474. https://doi.org/10.2147/ijgm.s384068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Almuntashiri, S., Han, Y., Youngblood, H. A., Chase, A., Zhu, Y., Wang, X., . . . Zhang, D. (2022). Identification of circulating microvesicle-encapsulated miR-223 as a potential novel biomarker for ARDS. Physiological Reports, 10(21), e15494. https://doi.org/10.14814/phy2.15494

  133. Zhu, Z., Liang, L., Zhang, R., Wei, Y., Su, L., Tejera, P., . . . Christiani, D. C. (2017). Whole blood microRNA markers are associated with acute respiratory distress syndrome. Intensive Care Medicine Experimental, 5(1), 38. https://doi.org/10.1186/s40635-017-0155-0

  134. Zhang, L., Xu, Y., Xue, S., Wang, X., Dai, H., Qian, J., . . . Yan, Y. (2017). Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury. International Urology and Nephrology, 49(3), 541–550. https://doi.org/10.1007/s11255-016-1485-7

  135. Aguado-Fraile, E., Ramos, E., Conde, E., Rodríguez, M., Martín-Gómez, L., Lietor, A., . . . García-Bermejo, M. L. (2015). A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury. PloS one, 10(6), e0127175. https://doi.org/10.1371/journal.pone.0127175

  136. Ramachandran, K., Saikumar, J., Bijol, V., Koyner, J. L., Qian, J., Betensky, R. A., . . . Vaidya, V. S. (2013). Human miRNome Profiling Identifies MicroRNAs Differentially Present in the Urine after Kidney Injury. Clinical Chemistry, 59(12), 1742–1752. https://doi.org/10.1373/clinchem.2013.210245

  137. Huang, Q., Chen, G., Huang, Y., Li, J., Ding, Y., Zhang, S., . . . Zhang, J. (2020). Genetic variant rs3750625 in the 3'UTR of ADRA2A affects the sleep quality of patients in the ICU by promoting miR‑34a binding to ADRA2A. International Journal of Molecular Medicine, 45(3), 910–918. https://doi.org/10.3892/ijmm.2020.4456

  138. Zhang, L., Wu, T., Wu, D., Liu, Y., Bai, M., & Chen, S. (2017). Clinical significance of combined detection of peripheral miR-182 and IL-17 in the early diagnosis of patients with eclampsia complicated with cerebral infarction in ICU. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 29(6), 525–530. https://doi.org/10.3760/cma.j.issn.2095-4352.2017.06.010

    Article  PubMed  Google Scholar 

  139. Kim, H. J., Kim, I. S., Lee, S.-G., Kim, Y. J., Silwal, P., Kim, J. Y., . . . Jo, E.-K. (2021). MiR-144–3p is associated with pathological inflammation in patients infected with Mycobacteroides abscessus. Experimental & Molecular Medicine, 53(1), 136–149. https://doi.org/10.1038/s12276-020-00552-0

  140. Khatami, A., Taghizadieh, M., Sadri Nahand, J., Karimzadeh, M., Kiani, S. J., Khanaliha, K., . . . Bokharaei-Salim, F. (2023). Evaluation of MicroRNAs expression pattern (miR-28, miR-181a, miR-34a, and miR-31) in Patients with COVID-19 Admitted to ICU, and Diabetic COVID-19 patients. Intervirology. https://doi.org/10.1159/000529985

  141. Srivastava, S., Garg, I., Singh, Y., Meena, R., Ghosh, N., Kumari, B., . . . Ganju, L. (2023). Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon, 9(2), e13388. https://doi.org/10.1016/j.heliyon.2023.e13388

  142. Crosignani, A., Spina, S., Marrazzo, F., Cimbanassi, S., Malbrain, M. L. N. G., Van Regenemortel, N., . . . Langer, T. (2022). Intravenous fluid therapy in patients with severe acute pancreatitis admitted to the intensive care unit: a narrative review. Annals of Intensive Care, 12(1), 98. https://doi.org/10.1186/s13613-022-01072-y

  143. Shafiq, F., Khan, M. F., Asghar, M. A., Shamim, F., & Sohaib, M. (2018). Outcome of patients with acute pancreatitis requiring intensive care admission: A retrospective study from a tertiary care center of Pakistan. Pakistan Journal of Medical Sciences, 34(5), 1082–1087. https://doi.org/10.1269/pjms.345.15575

    Article  PubMed  PubMed Central  Google Scholar 

  144. Qu, Y., Ding, Y., Lu, J., Jia, Y., Bian, C., Guo, Y., . . . Li, F. (2023). Identification of key microRNAs in exosomes derived from patients with the severe acute pancreatitis. Asian Journal of Surgery, 46(1), 337–347. https://doi.org/10.1016/j.asjsur.2022.04.032

  145. Fagundes, A., Berg, D. D., Park, J.-G., Baird-Zars, V. M., Newby, L. K., Barsness, G. W., . . . Bohula, E. A. (2022). Patients With Acute Coronary Syndromes Admitted to Contemporary Cardiac Intensive Care Units: Insights From the CCCTN Registry. Circulation: Cardiovascular Quality and Outcomes, 15(8), e008652. https://doi.org/10.1161/CIRCOUTCOMES.121.008652

  146. Matthay, M. A., Zemans, R. L., Zimmerman, G. A., Arabi, Y. M., Beitler, J. R., Mercat, A., . . . Calfee, C. S. (2019). Acute respiratory distress syndrome. Nature Reviews Disease Primers, 5(1), 18. https://doi.org/10.1038/s41572-019-0069-0

  147. Vilca Mejia, O. A., de Souza, R. C., S. Santos, A., Meneghini, B., Carvalho Silva, A. C., Visconde Brasil, G., . . . Biscegli Jatene, F. (2023). MiRNA-30d and miR-770-5p as potential clinical risk predictors of Vasoplegic Syndrome in Patients undergoing on-pump coronary artery bypass grafting. Scientific Reports, 13(1), 2084. https://doi.org/10.1038/s41598-023-28978-2

  148. Kamdar, B. B., Needham, D. M., & Collop, N. A. (2012). Sleep deprivation in critical illness: Its role in physical and psychological recovery. Journal of Intensive Care Medicine, 27(2), 97–111. https://doi.org/10.1177/0885066610394322

    Article  PubMed  Google Scholar 

  149. Morovat, P., Morovat, S., Hosseinpour, M., Moslabeh, F. G. Z., Kamali, M. J., & Samadani, A. A. (2022). Survival-based bioinformatics analysis to identify hub long non-coding RNAs along with lncRNA-miRNA-mRNA network for potential diagnosis/prognosis of thyroid cancer. Journal of Cell Communication and Signaling. https://doi.org/10.1007/s12079-022-00697-9

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cao, D.-D., Li, L., & Chan, W.-Y. (2016). MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. International Journal of Molecular Sciences, 17(6), 842.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schwarzenbach, H., Da Silva, A. M., Calin, G., & Pantel, K. (2015). Data normalization strategies for microRNA quantification. Clinical Chemistry, 61(11), 1333–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, J., Chen, J., & Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of Cellular Physiology, 231(1), 25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yuechen, Z., Shaosong, X., Zhouxing, Z., Fuli, G., & Wei, H. (2023). A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2023.1125888

    Article  PubMed  PubMed Central  Google Scholar 

  154. Sato, F., Tsuchiya, S., Terasawa, K., & Tsujimoto, G. (2009). Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS ONE, 4(5), e5540.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Witwer, K. W. (2015). Circulating microRNA biomarker studies: Pitfalls and potential solutions. Clinical Chemistry, 61(1), 56–63.

    Article  CAS  PubMed  Google Scholar 

  156. Wang, H., Peng, R., Wang, J., Qin, Z., & Xue, L. (2018). Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clinical Epigenetics, 10(1), 1–10.

    Article  Google Scholar 

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. YY and LL wrote and revised the article.

Corresponding author

Correspondence to Linjun Liao.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests associated with the manuscript.

Ethical Approval

No ethics approval is needed for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Liao, L. MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes. Mol Biotechnol 66, 1357–1375 (2024). https://doi.org/10.1007/s12033-023-00767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00767-2

Keywords

Navigation