Skip to main content
Log in

In Silico Study in MPO and Molecular Docking of the Synthetic Drynaran Analogues Against the Chronic Tinnitus: Modulation of the M1 Muscarinic Acetylcholine Receptor

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a–d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.

Graphical Abstract

Description The study of the biological activities of Drynaria bonii led to the ADMET model to be used, mainly in relation to intestinal absorption and brain activity. The web-services made it possible, through a similarity test, to select the M1 muscarinic receptor, used in the ligand-receptor interaction tests, estimating the way of treating tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

Abbreviations

ADMET:

: Absorption, distribution, metabolism, excretion and toxicity

AMES:

: Ames mutagenicity

BBB:

: Blood–brain barrier

BZP:

: Bromazepam

ChEMBL:

: European molecular biology laboratory

ChRs:

: Cholinergic receptors

CLint,u:

: Intrinsic clearance of the unbound fraction in liver

CNS:

: Central nervous system

CYP450:

: Cytochrome P450

F30% :

: Fraction of bioavailability > 30%

FM:

: Fathead minnow

GPCR:

: G protein-coupled receptor

HBD:

: H-bond donors

H-HT:

: Human hepatotoxicity

HIA:

: Human intestinal absorption

LC50 :

: Lethal concentration

LD50 :

: Lethal dose

logD:

: Buffer lipophilicity

logP:

: Intrinsic lipophilicity

L-R:

: Ligand-receptor

mAChRs:

: Muscarinic acetylcholine receptors

MDCK:

: Madin-darby canine kidney

MPO:

: Multiparameter optimization

MTD:

: Maximum tolerated dose

MW:

: Molecular weight

NMA:

: Normal mode analysis

Papp :

: Passive permeability

P-gp:

: P-glycoprotein

RMSD:

: Root mean square deviation

TPSA:

: Topological polar surface area

TTP:

: Tiotropium

References

  1. De Ridder, D., Schlee, W., Vanneste, S., Londero, A., Weisz, N., Kleinjung, T., … Langguth, B. (2021). Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international multidisciplinary proposal). In Progress in Brain Research (pp. 1–25).

  2. McCormack, A., Edmondson-Jones, M., Somerset, S., & Hall, D. (2016). A systematic review of the reporting of tinnitus prevalence and severity. Hearing Research, 337, 70–79.

    Article  PubMed  Google Scholar 

  3. Geven, L. I., de Kleine, E., Willemsen, A. T. M., & van Dijk, P. (2014). Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Neuroscience, 256, 117–125.

    Article  PubMed  CAS  Google Scholar 

  4. Martinez, C., Wallenhorst, C., McFerran, D., & Hall, D. A. (2015). Incidence rates of clinically significant tinnitus. Ear & Hearing, 36(3), e69–e75.

    Article  Google Scholar 

  5. Shargorodsky, J., Curhan, G. C., & Farwell, W. R. (2010). Prevalence and characteristics of tinnitus among US adults. The American Journal of Medicine, 123(8), 711–718.

    Article  PubMed  Google Scholar 

  6. Crönlein, T., Langguth, B., Pregler, M., Kreuzer, P. M., Wetter, T. C., & Schecklmann, M. (2016). Insomnia in patients with chronic tinnitus: Cognitive and emotional distress as moderator variables. Journal of Psychosomatic Research, 83, 65–68.

    Article  PubMed  Google Scholar 

  7. Park, E., Kim, H., Choi, I. H., Han, H. M., Han, K., Jung, H. H., & Im, G. J. (2020). Psychiatric distress as a common risk factor for tinnitus and joint pain: A national population-based survey. Clinical and Experimental Otorhinolaryngology, 13(3), 234–240.

    Article  PubMed  Google Scholar 

  8. Cheng, Y.-F., Xirasagar, S., Kuo, N.-W., & Lin, H.-C. (2023). Tinnitus and risk of attempted suicide: A one year follow-up study. Journal of Affective Disorders, 322, 141–145.

    Article  PubMed  Google Scholar 

  9. Tailor, B. V., Thompson, R. E., Nunney, I., Agius, M., & Phillips, J. S. (2021). Suicidal ideation in people with tinnitus: A systematic review and meta-analysis. The Journal of Laryngology & Otology, 135(12), 1042–1050.

    Article  Google Scholar 

  10. Mousavi, S. H. G., Sajadinejad, B., Khorsandi, S., & Farhadi, A. (2021). Diabetes mellitus and tinnitus: An epidemiology study. Maedica—A Journal of Clinical Medicine. https://doi.org/10.26574/maedica.2021.16.4.580

    Article  Google Scholar 

  11. Oiticica, J., & Bittar, R. S. M. (2015). Tinnitus prevalence in the city of São Paulo. Brazilian Journal of Otorhinolaryngology, 81(2), 167–176.

    Article  PubMed  Google Scholar 

  12. Gibrin, P. C. D., Ciquinato, D. S. D. A., Gonçalves, I. C., Marchiori, V. D. M., & Marchiori, L. L. D. M. (2019). Tinnitus and its relationship with anxiety and depression in the elderly: A systematic review. Revista CEFAC. https://doi.org/10.1590/1982-0216/20192147918

    Article  Google Scholar 

  13. Fernández de Sevilla, D., Núñez, A., & Buño, W. (2021). Muscarinic receptors, from synaptic plasticity to its role in network activity. Neuroscience, 456, 60–70.

    Article  PubMed  Google Scholar 

  14. Stefanescu, R. A., & Shore, S. E. (2017). Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. Journal of Neurophysiology, 117(3), 1229–1238.

    Article  PubMed  CAS  Google Scholar 

  15. Bojić, T., Perović, V. R., Senćanski, M., & Glišić, S. (2017). Identification of candidate allosteric modulators of the M1 muscarinic acetylcholine receptor which may improve vagus nerve stimulation in chronic tinnitus. Frontiers in Neuroscience, 11, 636.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson, C. R., Kangas, B. D., Jutkiewicz, E. M., Bergman, J., & Coop, A. (2022). Drug design targeting the muscarinic receptors and the implications in central nervous system disorders. Biomedicines, 10(2), 398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mazzolari, A., Gervasoni, S., Pedretti, A., Fumagalli, L., Matucci, R., & Vistoli, G. (2020). Repositioning dequalinium as potent muscarinic allosteric ligand by combining virtual screening campaigns and experimental binding assays. International Journal of Molecular Sciences, 21(17), 5961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kappel, K., Miao, Y., & McCammon, J. A. (2015). Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Quarterly Reviews of Biophysics, 48(4), 479–487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Davison, E. K., & Brimble, M. A. (2019). Natural product derived privileged scaffolds in drug discovery. Current Opinion in Chemical Biology, 52, 1–8.

    Article  PubMed  CAS  Google Scholar 

  20. Pinto, M. M., Palmeira, A., Fernandes, C., Resende, D. I., Sousa, E., Cidade, H., Tiritan, M. E., Correia-da-Silva, M., & Cravo, S. (2021). From natural products to new synthetic small molecules: A journey through the world of xanthones. Molecules, 26(2), 431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. De Matos, A. M., Martins, A., Man, T., Evans, D., Walter, M., Oliveira, M. C., López, Ó., Fernandez-Bolaños, J. G., Dätwyler, P., Ernst, B., & Macedo, M. P. (2019). Design and synthesis of CNS-targeted flavones and analogues with neuroprotective potential against H2O2- and Aβ1–42-induced toxicity in SH-SY5Y human neuroblastoma cells. Pharmaceuticals, 12(2), 98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thapa, P., Upadhyay, S. P., Suo, W. Z., Singh, V., Gurung, P., Lee, E. S., Sharma, R., & Sharma, M. (2021). Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease. Bioorganic Chemistry, 108, 104681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rabie, A. M. (2022). Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega, 7(3), 2960–2969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rabie, A. M. (2021). Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chemico-Biological Interactions, 343, 109480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rabie, A. M., Tantawy, A. S., & Badr, S. M. I. (2016). Design, synthesis, and biological evaluation of novel 5-substituted-2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles as potent antioxidants. American Journal of Organic Chemistry, 6(2), 54–80.

    Article  CAS  Google Scholar 

  26. Rabie, A. M., Tantawy, A. S., & Badr, S. M. I. (2018). Design, synthesis, and biological evaluation of new 5-substituted-1,3,4-thiadiazole-2-thiols as potent antioxidants. Researcher, 10(7), 21–43.

    Google Scholar 

  27. Rabie, A. M. (2021). Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New Journal of Chemistry, 45(2), 761–771.

    Article  CAS  Google Scholar 

  28. Trinh, P. T. N., Tri, M. D., An, N. H., An, P. N., Minh, P. N., & Dung, L. T. (2015). Phenolic compounds from the Rhizomes of Drynaria bonii. Chemistry of Natural Compounds, 51(3), 476–479.

    Article  CAS  Google Scholar 

  29. Elkington, B. G., Southavong, B., Sydara, K., Souliya, O., Vanthanouvong, M., Nettavong, K., Thammachack, B., Pak, D. H., Riley, M. C., Franzblau, S. G., & Soejarto, D. D. (2009). Biological evaluation of plants of laos used in the treatment of tuberculosis in lao traditional medicine. Pharmaceutical Biology, 47(1), 26–33.

    Article  PubMed  Google Scholar 

  30. Mendes, L. L., Varejão, J. O. S., Terra, F. M., Neto, J. H. D. A., & Varejão, E. V. (2022). Synthesis of drynaran and analogues. Journal of Molecular Structure, 1250, 131673.

    Article  CAS  Google Scholar 

  31. de Conti, A., Beland, F. A., & Pogribny, I. P. (2017). The role of epigenomic alterations in furan-induced hepatobiliary pathologies. Food and Chemical Toxicology, 109, 677–682.

    Article  PubMed  Google Scholar 

  32. Alnabulsi, S., Santina, E., Russo, I., Hussein, B., Kadirvel, M., Chadwick, A., Bichenkova, E. V., Bryce, R. A., Nolan, K., Demonacos, C., & Stratford, I. J. (2016). Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria. European Journal of Medicinal Chemistry, 111, 33–45.

    Article  PubMed  CAS  Google Scholar 

  33. Shchekotikhin, A. E., Dezhenkova, L. G., Tsvetkov, V. B., Luzikov, Y. N., Volodina, Y. L., Tatarskiy, V. V., Jr., Kalinina, A. A., Treshalin, M. I., Treshalina, H. M., Romanenko, V. I., & Kaluzhny, D. N. (2016). Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. European Journal of Medicinal Chemistry, 112, 114–129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Csizmadia, P. (1999). MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. In Proceedings of The 3rd International Electronic Conference on Synthetic Organic Chemistry (p. 1775). Basel, Switzerland: MDPI.

  35. Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2010). Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chemical Neuroscience, 1(6), 435–449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., & Greene, N. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic and Medicinal Chemistry Letters, 18(17), 4872–4875.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the golden triangle to optimize clearance and oral absorption. Bioorganic and Medicinal Chemistry Letters, 19(19), 5560–5564.

    Article  PubMed  CAS  Google Scholar 

  38. Ritchie, T. J., Ertl, P., & Lewis, R. (2011). The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discovery Today, 16(1–2), 65–72.

    Article  PubMed  CAS  Google Scholar 

  39. Wager, T. T., Chandrasekaran, R. Y., Hou, X., Troutman, M. D., Verhoest, P. R., Villalobos, A., & Will, Y. (2010). Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chemical Neuroscience, 1(6), 420–434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zerroug, A., Belaidi, S., BenBrahim, I., Sinha, L., & Chtita, S. (2019). Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. Journal of King Saud University - Science, 31(4), 595–601.

    Article  Google Scholar 

  41. van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery, 2(3), 192–204.

    Article  PubMed  Google Scholar 

  42. Zheng, M., Luo, X., Shen, Q., Wang, Y., Du, Y., Zhu, W., & Jiang, H. (2009). Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics, 25(10), 1251–1258.

    Article  PubMed  CAS  Google Scholar 

  43. Matlock, M. K., Hughes, T. B., & Swamidass, S. J. (2015). XenoSite server: A web-available site of metabolism prediction tool. Bioinformatics, 31(7), 1136–1137.

    Article  PubMed  CAS  Google Scholar 

  44. Xu, C., Cheng, F., Chen, L., Du, Z., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2012). In silico prediction of chemical ames mutagenicity. Journal of Chemical Information and Modeling, 52(11), 2840–2847.

    Article  PubMed  CAS  Google Scholar 

  45. Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Central Science, 1(4), 168–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen, X., Dang, L., Yang, H., Huang, X., & Yu, X. (2020). Machine learning-based prediction of toxicity of organic compounds towards fathead minnow. RSC Advances, 10(59), 36174–36180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W3664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(1), 32–38.

    Article  Google Scholar 

  49. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519.

    Article  CAS  Google Scholar 

  50. Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory. Retrieved June 5, 2020, from https://www.researchgate.net/profile/Vasanthan-Vasudevan-2/post/Auto-grid-generation-in-Autodock-tool-for-docking/attachment/59d6223fc49f478072e98d56/AS%3A272113926115328%401441888423193/download/example.zip

  51. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 445–461.

    Article  Google Scholar 

  52. Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  53. López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(W1), W271–W276.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2016). Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chemical Neuroscience, 7(6), 767–775.

    Article  PubMed  CAS  Google Scholar 

  55. Ertl, P. (2007). Polar Surface Area. Molecular Drug Properties: Measurement and Prediction, (pp. 111–126).

  56. Veber, D. F., Johnson, S. R., Cheng, H., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.

    Article  PubMed  CAS  Google Scholar 

  57. Egan, W. J., & Lauri, G. (2002). Prediction of intestinal permeability. Advanced Drug Delivery Reviews, 54(3), 273–289.

    Article  PubMed  CAS  Google Scholar 

  58. Xiong, B., Wang, Y., Chen, Y., Xing, S., Liao, Q., Chen, Y., Li, Q., Li, W., & Sun, H. (2021). Strategies for structural modification of small molecules to improve blood-brain barrier penetration: A recent perspective. Journal of Medicinal Chemistry, 64(18), 13152–13173.

    Article  PubMed  CAS  Google Scholar 

  59. Pires, D. E., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. Computational Drug Discovery and Design (pp. 271–284). Humana Press.

    Chapter  Google Scholar 

  60. Date, M. S., O’Brien, D., Botelho, D. J., Schultz, T. W., Liebler, D. C., Penning, T. M., & Salvito, D. T. (2020). Clustering a chemical inventory for safety assessment of fragrance ingredients: Identifying read-across analogs to address data gaps. Chemical Research in Toxicology, 33(7), 1709–1718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Su, H., Sheng, X., Zhu, W., Ma, G., & Liu, Y. (2017). Mechanistic insights into the decoupled desaturation and epoxidation catalyzed by dioxygenase asqj involved in the biosynthesis of quinolone alkaloids. ACS Catalysis, 7(8), 5534–5543.

    Article  CAS  Google Scholar 

  62. Fackler, P., Huber, S. M., & Bach, T. (2012). Enantio- and regioselective epoxidation of olefinic double bonds in quinolones, pyridones, and amides catalyzed by a ruthenium porphyrin catalyst with a hydrogen bonding site. Journal of the American Chemical Society, 134(30), 12869–12878.

    Article  PubMed  CAS  Google Scholar 

  63. Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rishton, G. M. (1997). Reactive compounds and in vitro false positives in HTS. Drug Discovery Today, 2(9), 382–384.

    Article  CAS  Google Scholar 

  65. Jenkins, J. L. (2012). Large-scale QSAR in target prediction and phenotypic HTS assessment. Molecular Informatics, 31(6–7), 508–514.

    Article  PubMed  CAS  Google Scholar 

  66. Saikia, S., Bordoloi, M., & Sarmah, R. (2019). Established and In-trial GPCR families in clinical trials: A review for target selection. Current Drug Targets, 20(5), 522–539.

    Article  PubMed  CAS  Google Scholar 

  67. Shityakov, S., & Foerster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry. https://doi.org/10.2147/AABC.S63749

    Article  PubMed  PubMed Central  Google Scholar 

  68. Imberty, A., Hardman, K. D., Carver, J. P., & Perez, S. (1991). Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology, 1(6), 631–642.

    Article  PubMed  CAS  Google Scholar 

  69. Selvam, B., Landagaray, E., Cartereau, A., Laurent, A. D., Graton, J., Lebreton, J., Thany, S. H., Mathé-Allainmat, M., & Le Questel, J. Y. (2023). Identification of sulfonamide compounds active on the insect nervous system: Molecular modeling, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 80, 129124.

    Article  CAS  Google Scholar 

  70. Das, A., Matada, G. S. P., Dhiwar, P. S., Raghavendra, N. M., Abbas, N., Singh, E., Ghara, A., & Shenoy, G. P. (2023). Molecular recognition of some novel mTOR kinase inhibitors to develop anticancer leads by drug-likeness, molecular docking and molecular dynamics based virtual screening strategy. Computational Toxicology, 25, 100257.

    Article  CAS  Google Scholar 

  71. Laskey, C., & Opitz, B. (2020). Tinnitus associated with benzodiazepine withdrawal syndrome: A case report and literature review. Mental Health Clinician, 10(3), 100–103.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J., & Meléndez, E. (2014). Functionalized ferrocenes: The role of the para substituent on the phenoxy pendant group. Journal of Organometallic Chemistry, 749, 204–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hammett, L. P. (1937). The effect of structure upon the reactions of organic compounds benzene derivatives. Journal of the American Chemical Society, 59(1), 96–103.

    Article  CAS  Google Scholar 

Download references

Funding

This research was not funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MNR and ANMD; supervision, ESM and HSS; writing—original draft preparation, MNR, GSM and HSS; reviewing and editing of the manuscript, ESM, ANMD and AMF; all authors read and agreed to the fnal version of the manuscript.

Corresponding author

Correspondence to Matheus Nunes da Rocha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 309 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha, M.N., da Fonseca, A.M., Dantas, A.N.M. et al. In Silico Study in MPO and Molecular Docking of the Synthetic Drynaran Analogues Against the Chronic Tinnitus: Modulation of the M1 Muscarinic Acetylcholine Receptor. Mol Biotechnol 66, 254–269 (2024). https://doi.org/10.1007/s12033-023-00748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00748-5

Keywords

Navigation