Skip to main content

Advertisement

Log in

The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  3. Yadav BS, Sharma SC, Robin TP, et al. Synchronous primary carcinoma of breast and ovary versus ovarian metastases. Semin Oncol. 2015;42(2):e13–24. https://doi.org/10.1053/j.seminoncol.2014.12.020.

    Article  PubMed  Google Scholar 

  4. Demopoulos RI, Touger L, Dubin N. Secondary ovarian carcinoma. Int J Gynecol Pathol. 1987;6(2):166–75. https://doi.org/10.1097/00004347-198706000-00008.

    Article  CAS  Google Scholar 

  5. Bigorie V, Morice P, Duvillard P, et al. Ovarian metastases from breast cancer. Cancer. 2010;116(4):799–804. https://doi.org/10.1002/cncr.24807.

    Article  PubMed  Google Scholar 

  6. Rosendahl M, Timmermans Wielenga V, Nedergaard L, et al. Cryopreservation of ovarian tissue for fertility preservation: no evidence of malignant cell contamination in ovarian tissue from patients with breast cancer. Fertil Steril. 2011;95(6):2158–61. https://doi.org/10.1016/j.fertnstert.2010.12.019.

    Article  PubMed  Google Scholar 

  7. Tian W, Zhou Y, Wu M, Yao Y, Deng Y. Ovarian metastasis from breast cancer: a comprehensive review. Clin and Transl Oncol. 2019;21(7):819–27. https://doi.org/10.1007/s12094-018-02007-5.

    Article  CAS  Google Scholar 

  8. Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev. 2013;65(3):383–90. https://doi.org/10.1016/j.addr.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Yu S, Zinn K, et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol. 2006;176(3):1375–85. https://doi.org/10.4049/jimmunol.176.3.1375.

    Article  CAS  Google Scholar 

  10. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35. https://doi.org/10.1038/nature15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep. 2014;4:5750. https://doi.org/10.1038/srep05750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716. https://doi.org/10.1038/ncomms7716.

    Article  CAS  PubMed  Google Scholar 

  13. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81. https://doi.org/10.1016/j.ceb.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  14. Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron. 2012;5(3):323–32. https://doi.org/10.1007/s12307-012-0110-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31(4):642–8. https://doi.org/10.1016/j.mcn.2005.12.003.

    Article  CAS  PubMed  Google Scholar 

  16. Mignot G, Roux S, Thery C, Ségura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10(2):376–88. https://doi.org/10.1111/j.1582-4934.2006.tb00406.x.

    Article  CAS  PubMed  Google Scholar 

  17. Mu W, Rana S, Zöller M. Host Matrix Modulation by Tumor Exosomes Promotes Motility and Invasiveness. Neoplasia. 2013;15(8):875-IN4. https://doi.org/10.1593/neo.13786

  18. Gu P, Sun M, Li L, et al. Breast tumor-derived exosomal microRNA-200b-3p promotes specific organ metastasis through regulating CCL2 expression in lung epithelial cells. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.657158.

    Article  PubMed Central  Google Scholar 

  19. Moustakas A, de Herreros AG. Epithelial-mesenchymal transition in cancer. Mol Oncol. 2017;11(7):715–7. https://doi.org/10.1002/1878-0261.12094.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850. https://doi.org/10.1126/science.1234850.

    Article  CAS  PubMed  Google Scholar 

  21. Garnier D, Magnus N, Meehan B, Kislinger T, Rak J. Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state. Exp Cell Res. 2013;319(17):2747–57. https://doi.org/10.1016/j.yexcr.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao D, Barry S, Kmetz D, et al. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376(2):318–27. https://doi.org/10.1016/j.canlet.2016.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. You Y, Shan Y, Chen J, et al. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 2015;106(12):1669–77. https://doi.org/10.1111/cas.12818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chantrain CF, Shimada H, Jodele S, et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 2004;64(5):1675–86. https://doi.org/10.1158/0008-5472.CAN-03-0160.

    Article  CAS  PubMed  Google Scholar 

  25. Gorden DL, Fingleton B, Crawford HC, Jansen DE, Lepage M, Matrisian LM. Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int J Cancer. 2007;121(3):495–500. https://doi.org/10.1002/ijc.22594.

    Article  CAS  PubMed  Google Scholar 

  26. Bayasula, Iwase A, Kiyono T, et al. Establishment of a human nonluteinized granulosa cell line that transitions from the gonadotropin-independent to the gonadotropin-dependent status. Endocrinology. 2012;153(6):2851–60. https://doi.org/10.1210/en.2011-1810.

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS ONE. 2014;9(10):e110443. https://doi.org/10.1371/journal.pone.0110443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turan D, Abdik H, Sahin F, Avşar AE. Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson’s disease. Eur J Pharmacol. 2020;883:173342. https://doi.org/10.1016/j.ejphar.2020.173342.

    Article  CAS  PubMed  Google Scholar 

  29. Witwer KW, Goberdhan DC, O’Driscoll L, et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10(14):e12182. https://doi.org/10.1002/jev2.12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer. 2019;18(1):69. https://doi.org/10.1186/s12943-019-0992-4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32(1–2):303–15. https://doi.org/10.1007/s10555-012-9415-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alsibai KD, Meseure D. Significance of tumor microenvironment scoring and immune biomarkers in patient stratification and cancer outcomes. In: Histopathology - An Update. InTech; 2018. https://doi.org/10.5772/intechopen.72648

  33. Kim H, Lee S, Shin E, et al. The emerging roles of exosomes as EMT regulators in cancer. Cells. 2020;9(4):861. https://doi.org/10.3390/cells9040861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao H, Achreja A, Iessi E, et al. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta (BBA) Rev Cancer. 2018;1869(1):64–77. https://doi.org/10.1016/j.bbcan.2017.11.005.

    Article  CAS  Google Scholar 

  35. van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–92. https://doi.org/10.1111/jth.12602.

    Article  PubMed  Google Scholar 

  36. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93. https://doi.org/10.1038/nri2567.

    Article  CAS  PubMed  Google Scholar 

  37. Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780–8. https://doi.org/10.1016/j.nano.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  38. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019. https://doi.org/10.3390/cells8070727.

    Article  PubMed  PubMed Central  Google Scholar 

  39. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. https://doi.org/10.1124/pr.112.005983.

    Article  CAS  PubMed  Google Scholar 

  40. Chernyshev VS, Rachamadugu R, Tseng YH, et al. Size and shape characterization of hydrated and desiccated exosomes. Anal Bioanal Chem. 2015;407(12):3285–301. https://doi.org/10.1007/s00216-015-8535-3.

    Article  CAS  PubMed  Google Scholar 

  41. Kalfon T, Loewenstein S, Gerstenhaber F, et al. Gastric cancer-derived extracellular vesicles (EVs) promote angiogenesis via angiopoietin-2. Cancers. 2022;14(12):2953. https://doi.org/10.3390/cancers14122953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koga K, Matsumoto K, Akiyoshi T, et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 2005;25(6A):3703–7.

    CAS  PubMed  Google Scholar 

  43. Stark GR, Taylor WR. Analyzing the G2/M checkpoint. Methods Mol Biol. 2004;280:51–82. https://doi.org/10.1385/1-59259-788-2:051.

    Article  CAS  PubMed  Google Scholar 

  44. Lázaro-Ibáñez E, Neuvonen M, Takatalo M, et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles. 2017;6(1):1354645. https://doi.org/10.1080/20013078.2017.1354645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giusti I, Di Francesco M, D’Ascenzo S, et al. Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biol Ther. 2018;19(8):722–34. https://doi.org/10.1080/15384047.2018.1451286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardeñes B, Clares I, Bezos T, et al. ALCAM/CD166 is involved in the binding and uptake of cancer-derived extracellular vesicles. Int J Mol Sci. 2022;23(10):5753. https://doi.org/10.3390/ijms23105753.

    Article  CAS  PubMed Central  Google Scholar 

  47. Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab. 2019;20(10):804–14. https://doi.org/10.2174/1389200220666190819151946.

    Article  CAS  PubMed  Google Scholar 

  48. Yu M, Gai C, Li Z, et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 2019;110(10):3173–82. https://doi.org/10.1111/cas.14181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pužar Dominkuš P, Stenovec M, Sitar S, et al. PKH26 labeling of extracellular vesicles: characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr. 2018;1860(6):1350–61. https://doi.org/10.1016/j.bbamem.2018.03.013.

    Article  CAS  PubMed  Google Scholar 

  50. Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe. 2018;24(5):637-652.e8. https://doi.org/10.1016/j.chom.2018.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging. 2002;23(5):843–53. https://doi.org/10.1016/s0197-4580(02)00074-x.

    Article  CAS  PubMed  Google Scholar 

  52. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45(5):559–79. https://doi.org/10.1051/rnd:2005046.

    Article  CAS  PubMed  Google Scholar 

  53. Shaikh SR, Edidin M. Polyunsaturated fatty acids and membrane organization: elucidating mechanisms to balance immunotherapy and susceptibility to infection. Chem Phys Lipids. 2008;153(1):24–33. https://doi.org/10.1016/j.chemphyslip.2008.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr. 2006;84(6):1277–89. https://doi.org/10.1093/ajcn/84.6.1277.

    Article  CAS  PubMed  Google Scholar 

  55. Pepe S. Dietary polyunsaturated fatty acids and age-related membrane changes in the heart. Ann N Y Acad Sci. 2007;1114:381–8. https://doi.org/10.1196/annals.1396.046.

    Article  CAS  PubMed  Google Scholar 

  56. Sok M, Šentjurc M, Schara M. Membrane fluidity characteristics of human lung cancer. Cancer Lett. 1999;139(2):215–20. https://doi.org/10.1016/S0304-3835(99)00044-0.

    Article  CAS  PubMed  Google Scholar 

  57. Deliconstantinos G. Physiological aspects of membrane lipid fluidity in malignancy. Anticancer Res. 1987;7(5B):1011–21.

    CAS  PubMed  Google Scholar 

  58. Kier AB. Membrane properties of metastatic and non-metastatic cells cultured from C3H mice injected with LM fibroblasts. Biochim Biophys Acta (BBA) Biomembr. 1990;1022(3):365–72. https://doi.org/10.1016/0005-2736(90)90287-X.

    Article  CAS  Google Scholar 

  59. Kozłowska K, Nowak J, Kwiatkowski B, Cichorek M. ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties. Exp Toxicol Pathol. 1999;51(1):89–92. https://doi.org/10.1016/S0940-2993(99)80074-8.

    Article  PubMed  Google Scholar 

  60. Hąc-Wydro K, Wydro P. The influence of fatty acids on model cholesterol/phospholipid membranes. Chem Phys Lipids. 2007;150(1):66–81. https://doi.org/10.1016/j.chemphyslip.2007.06.213.

    Article  CAS  PubMed  Google Scholar 

  61. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28. https://doi.org/10.1038/nrc2131.

    Article  CAS  Google Scholar 

  62. Xu R, Won JY, Kim CH, Kim DE, Yim H. Roles of the phosphorylation of transcriptional factors in epithelial-mesenchymal transition. J Oncol. 2019;2019:5810465. https://doi.org/10.1155/2019/5810465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dave N, Guaita-Esteruelas S, Gutarra S, et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem. 2011;286(14):12024–32. https://doi.org/10.1074/jbc.M110.168625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol. 2001;11(3):297–305. https://doi.org/10.1016/S0959-4388(00)00211-7.

    Article  CAS  PubMed  Google Scholar 

  65. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell and Mol Life Sci. 2011;68(18):3033–46. https://doi.org/10.1007/s00018-011-0735-1.

    Article  CAS  Google Scholar 

  66. Peña C, García JM, Larriba MJ, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28(49):4375–85. https://doi.org/10.1038/onc.2009.285.

    Article  CAS  PubMed  Google Scholar 

  67. Yang SS, Ma S, Dou H, et al. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 2020;391(2):111983. https://doi.org/10.1016/j.yexcr.2020.111983.

    Article  CAS  PubMed  Google Scholar 

  68. Li M, He F, Zhang Z, Xiang Z, Hu D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res. 2020;48(2):030006051989750. https://doi.org/10.1177/0300060519897508.

    Article  CAS  Google Scholar 

  69. Izadi S, Nikkhoo A, Hojjat-Farsangi M, et al. CDK1 in breast cancer: implications for theranostic potential. Anticancer Agents Med Chem. 2020;20(7):758–67. https://doi.org/10.2174/1871520620666200203125712.

    Article  CAS  PubMed  Google Scholar 

  70. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66. https://doi.org/10.1038/nrc2602.

    Article  CAS  PubMed  Google Scholar 

  71. Prevo R, Pirovano G, Puliyadi R, et al. CDK1 inhibition sensitizes normal cells to DNA damage in a cell cycle dependent manner. Cell Cycle. 2018;17(12):1513–23. https://doi.org/10.1080/15384101.2018.1491236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Andries V, Vandepoele K, Staes K, et al. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest. BMC Cancer. 2015;15(1):391. https://doi.org/10.1186/s12885-015-1408-5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Park C, Jeong NY, Kim GY, et al. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Oncol Rep. 2014;31(4):1653–60. https://doi.org/10.3892/or.2014.3008.

    Article  CAS  PubMed  Google Scholar 

  74. Ren L, Yang Y, Li W, et al. CDK1 serves as a therapeutic target of adrenocortical carcinoma via regulating epithelial–mesenchymal transition, G2/M phase transition, and PANoptosis. J Transl Med. 2022;20(1):444. https://doi.org/10.1186/s12967-022-03641-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qiao L, Hu S, Huang K, et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics. 2020;10(8):3474–87. https://doi.org/10.7150/thno.39434.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dilek Öztürkoğlu (staff in the Yeditepe University) for their support in the process of lipidomic analysis.

Funding

This study was supported by Yeditepe University.

Author information

Authors and Affiliations

Authors

Contributions

MRY, HA and EAA designed the study. MRY and OKK performed the experiments. OKK, HA, and EAA analyzed the data. OKK and EAA generated the figures. EAA supervised all experiments. MRY, OKK and EAA wrote the manuscript. MRY, OKK, HA, FŞ, EAA reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ezgi Avşar Abdik.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interests.

Ethical approval

Ethical approval was not obtained for this manuscript as it was not a human participants or animal study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, M.R., Kırbaş, O.K., Abdik, H. et al. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 41, 30 (2024). https://doi.org/10.1007/s12032-023-02285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02285-2

Keywords

Navigation