Skip to main content

Advertisement

Log in

Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

There is no data to be disclosed separately for the current review article.

Abbreviations

MCF-7:

Michigan Cancer Foundation-7

T47D:

Differentiated epithelial substrain

MDA-MB-453:

MD Anderson-Metastatic Breast-453

Bcl-2:

B-cell lymphoma 2

VEGF:

Vascular endothelial growth factor

FOXM1-ER-α:

Forkhead box M1 Estrogen receptor α

EMT:

Epithelial–mesenchymal transition

PTEN:

Phosphatase and tensin homolog

CDH1:

E-cadherin

CD44:

Cluster of differentiation 4

Akt:

Ak strain transforming

SP1:

Specificity protein1

Cav-1:

Caveolin-1;

P-gp:

P-glycoprotein

hTERT:

Human Telomerase Reverse Transcriptase

NF-κB:

Nuclear factor-κB

CDK2:

Cyclin-dependent kinase 2

ZER:

Zerumbone

CXCR4:

C-X-C motif chemokine receptor 4

IC50 :

Inhibitory concentration

McTN:

Microtentacles

RUNX2:

Runt-related transcription factor 2

CDK6:

Cyclin-dependent kinase 6

ATF-3:

Activating transcription factor 3

FBI‐1:

Factor that binds to inducer of short transcripts‐1

mTOR:

Mammalian target of rapamycin

LOX:

Lysyl oxidase

MDM2:

Mouse double minute 2 homolog

BRCA1:

Breast Cancer gene 1

p21Cip1:

Cyclin-dependent kinase inhibitor p21

EphA2:

Ephrin type-A receptor 2

Twist1:

Twist-related protein 1

STAT3:

Signal transducer and activator of transcription 3

CCL2:

CC-Chemokine ligand 2

POLD1:

Polymerase δ catalytic subunit gene 1

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

MAP kinase:

Mitogen-activated protein kinase

BNIP3:

Bcl-2 interacting protein 3

BIRC5:

Baculoviral IAP Repeat Containing 5

TNFα:

Tumor necrosis factor α

GADD45A:

Growth arrest and DNA damage-inducible 45 alpha

HRK:

Harakiri

TNFRSF25:

TNF receptor superfamily member 25

TNFRSF11B:

Tumor necrosis factor receptor superfamily member 11B

TP53:

Tumor protein P53

GM-CSF:

Granulocyte macrophage-colony-stimulating factor

TSLP:

Thymic stromal lymphopoietin

4EBP1:

4E-binding protein 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

MSH2:

MutS homolog 2

MGMT:

O6-Methylguanine-DNA methyltransferase

XPC:

Xeroderma pigmentosum complementation gene

OGG1:

8-Oxoguanine DNA glycosylase

H3K9:

Histone H3 lysine 9

TXNRD2:

Thioredoxin reductase 2

HIF-1:

Hypoxia-inducible factor 1

GPR30 :

G Protein-Coupled Receptor

HOTAIR:

HOX transcript antisense intergenic RNA

TXNIP:

Thioredoxin-interacting protein

LC3-II:

LC3 phosphatidylethanolamine conjugate

References

  1. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:59. https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer. 2020;126:2225–49.

    Article  PubMed  Google Scholar 

  3. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022.

  4. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  5. Alam S, Kelleher SL (2012) Cellular mechanisms of zinc dysregulation: A perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients. 4:875

  6. Jin X, Mu P. Targeting breast cancer metastasis. Breast Cancer Basic Clin Res. 2015. https://doi.org/10.4137/BCBCR.S25460.

    Article  Google Scholar 

  7. Fedele M, Cerchia L, Chiappetta G. The epithelial-to-mesenchymal transition in breast cancer: Focus on basal-like carcinomas. Cancers (Basel). 2017. 9: 134

  8. Yeo SK, Guan JL. Breast cancer: multiple subtypes within a tumor? Trends Cancer. 2017. https://doi.org/10.1016/j.trecan.2017.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274:113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kitsios K, Sharifi S, Mahmoudi M. Nanomedicine technologies for diagnosis and treatment of breast cancer. ACS Pharmacol. Transl. Sci. 2023.

  11. Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 2022.

  12. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5:77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.16723.

    Article  PubMed Central  Google Scholar 

  15. Sharifi-Rad J, Ozleyen A, Tumer TB, Adetunji CO, El ON, Balahbib A, et al. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules. 2019. https://doi.org/10.3390/biom9110679.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carrera PM, Kantarjian HM, Blinder VS. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J Clin. 2018;68:153–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, et al. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. Futur J Pharm Sci. 2023;9:14.

    Article  Google Scholar 

  18. Yin L, Duan J-J, Bian X-W, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. https://doi.org/10.1186/s13058-020-01296-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling pathways and natural compounds in triple-negative breast cancer cell line. Molecules. 2022;27:3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shindikar A, Singh A, Nobre M, Kirolikar S. Curcumin and resveratrol as promising natural remedies with nanomedicine approach for the effective treatment of triple negative breast cancer. J Oncol. 2016;2016:1–13.

    Article  Google Scholar 

  21. Li X-X, Liu C, Dong S-L, Ou C-S, Lu J-L, Ye J-H, et al. Anticarcinogenic potentials of tea catechins. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.1060783/full.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, et al. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. 2022;13:315–34. https://doi.org/10.1007/s13167-022-00277-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucl. 2022;65:399–411.

    Article  Google Scholar 

  24. Costa D, Santos R, Da Silva AE, Themistocles BL, da Silva BG, Fialho E, et al. Green tea extract (Camellia sinensis) as a potential antitumoral agent on breast cancer cells (FS13–04–19). Curr Dev Nutr. 2019. https://doi.org/10.1093/cdn/nzz030.FS13-04-19.

    Article  PubMed Central  Google Scholar 

  25. Taleb Agha M, Baharetha HM, Al Mansoub MA, Tabana YM, Kaz Abdul Aziz NH, Yam MF, et al. Proapoptotic and antiangiogenic activities of Arctium Lappa L. on breast cancer cell lines. Scientifica (Cairo). 2020. https://doi.org/10.1155/2020/7286053.

    Article  PubMed  Google Scholar 

  26. Bassiri-Jahromi S. Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncol Rev. 2018. https://doi.org/10.4081/oncol.2018.345.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ombredane AS, Silva VRP, Andrade LR, Pinheiro WO, Simonelly M, Oliveira JV, et al. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: a systematic review. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.612903/full.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Keiler AM, Macejova D, Dietz BM, Bolton JL, Pauli GF, Chen S-N, et al. Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J Steroid Biochem Mol Biol. 2017;174:234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018;17:420–51.

    PubMed  PubMed Central  Google Scholar 

  30. Assi S, Torrington E, Cheema E, Al HA. Adverse drug reactions associated with chemotherapeutic agents used in breast cancer: Analysis of patients’ online forums. J Oncol Pharm Pract. 2021;27:108–18. https://doi.org/10.1177/1078155220915767.

    Article  PubMed  Google Scholar 

  31. Chatterjee P, Gupta S, Banerjee S. Understanding the role of the natural warriors: phytochemicals in breast cancer chemoprevention. Recent Front Phytochem. 2023. https://doi.org/10.1016/B978-0-443-19143-5.00004-9.

    Article  Google Scholar 

  32. Younas M, Hano C, Giglioli-Guivarc’h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv. 2018;8:29714–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seca A, Pinto D. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci. 2018;19:263.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun L, Zhou W, Zhang H, Guo Q, Yang W, Li B, et al. Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01153/full.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, et al. Recent updates on anticancer mechanisms of polyphenols. Front. Cell Dev. Biol. 2022.

  36. Rampogu S, Balasubramaniyam T, Lee J-H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother. 2022;155: 113760.

    Article  CAS  PubMed  Google Scholar 

  37. Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer chemopreventive role of dietary terpenoids by modulating Keap1-Nrf2-ARE signaling system—a comprehensive update. Appl Sci. 2021;11:10806.

    Article  CAS  Google Scholar 

  38. Harjotaruno S, Widyawaruyantil A, Sismindari ZNC. Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line. African J Tradit Complement Altern Med. 2007. https://doi.org/10.4314/ajtcam.v4i3.31228.

    Article  Google Scholar 

  39. Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res. 2018. https://doi.org/10.1186/s13046-018-0926-9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xu T, Jiang Y, Yuan S, Zhang L, Chen X, Zhao W, et al. Andrographolide inhibits ER-positive breast cancer growth and enhances fulvestrant efficacy via ROS-FOXM1-ER-α Axis. Front Oncol. 2022;12:1–11.

    Google Scholar 

  41. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A, Wnuk M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis. 2017. https://doi.org/10.1007/s10495-017-1353-7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Chang X, Zhang J, Li J, Wang N, Yang B, et al. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating SP1/Caveolin-1 signaling. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.745584/full.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Zhang P, Jiang H, Sun B, Luo H, Jia A. Ursolic acid enhances the sensitivity of MCF-7 and MDA-MB-231 cells to epirubicin by modulating the autophagy pathway. Molecules. 2022. https://doi.org/10.1371/journal.pone.0000693.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M. Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T Leukemia cells. PLoS ONE. 2007. https://doi.org/10.1371/journal.pone.0000693.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, et al. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286:6587–601.

    Article  CAS  PubMed  Google Scholar 

  46. Fröhlich T, Mai C, Bogautdinov RP, Morozkina SN, Shavva AG, Friedrich O, et al. Synthesis of tamoxifen-artemisinin and estrogen-artemisinin hybrids highly potent against breast and prostate cancer. ChemMedChem. 2020;15:1473–9. https://doi.org/10.1002/cmdc.202000174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hassani N, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N. The effect of dual bioactive compounds artemisinin and metformin Co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: potential apoptotic and anti-proliferative action. Appl Biochem Biotechnol. 2022. https://doi.org/10.1007/s12010-022-04000-9.

    Article  PubMed  Google Scholar 

  48. Kim E-S, Jeong C-S, Moon A. Genipin, a constituent of Gardenia jasminoides Ellis, induces apoptosis and inhibits invasion in MDA-MB-231 breast cancer cells. Oncol Rep. 2012;27:567–72.

    CAS  PubMed  Google Scholar 

  49. Cho YS. Genipin, an inhibitor of UCP2 as a promising new anticancer agent: a review of the literature. Int J Mol Sci. 2022;23:5637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Liu X, Wang X, Li F, Li J, Cao W. Furanodiene blocks NF-kB-dependent MMP-9 and VEGF activation and inhibits cellular invasiveness and angiogenesis of breast cancer cells in vitro and in vivo. Biomed Res. 2012;23:231–7.

    CAS  Google Scholar 

  51. Zhong Z, Dang Y, Yuan X, Guo W, Li Y, Tan W, et al. Furanodiene, a natural product, inhibits breast cancer growth both in vitro and in vivo. Cell Physiol Biochem. 2012;30:778–90.

    Article  CAS  PubMed  Google Scholar 

  52. Zhong Z, Tan W, Chen X, Wang Y. Furanodiene, a natural small molecule suppresses metastatic breast cancer cell migration and invasion in vitro. Eur J Pharmacol. 2014;737:1–10.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu X-Y, Guo D-W, Lao Q-C, Xu Y-Q, Meng Z-K, Xia B, et al. Sensitization and synergistic anti-cancer effects of Furanodiene identified in zebrafish models. Sci Rep. 2019;9:4541.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shanmugam MK, Ahn KS, Hsu A, Woo CC, Yuan Y, Tan KHB, et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front Pharmacol. 2018;9:1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El-Far AH, Saddiq AA, Mohamed SA, Almaghrabi OA, Mousa SA. Curcumin and thymoquinone combination attenuates breast cancer cell lines’ progression. Integr Cancer Ther. 2022;21:15347354221099536.

    Google Scholar 

  56. Roy A, Manikkam R. Cytotoxic impact of costunolide isolated from costus speciosus on breast cancer via differential regulation of cell cycle-an in-vitro and in-silico approach. Phytother Res. 2015;29:1532–9.

    Article  CAS  PubMed  Google Scholar 

  57. Choi YK, Seo HS, Choi HS, Choi HS, Kim SR, Shin YC, et al. Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231. Mol Cell Biochem. 2012;363:119–28.

    Article  CAS  PubMed  Google Scholar 

  58. Kim DY, Choi BY. Costunolide—A bioactive sesquiterpene lactone with diverse therapeutic potential. Int J Mol Sci. 2019;20:2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin S-C, Chu P-Y, Liao W-T, Wu M-Y, Tsui K-H, Lin L-T, et al. Glycyrrhizic acid induces human MDA-MB-231 breast cancer cell death and autophagy via the ROS-mitochondrial pathway. Oncol Rep. 2017;39:703–10.

    PubMed  Google Scholar 

  60. Azzahra SNA, Hanif N, Hermawan A. MDM2 is a potential target gene of glycyrrhizic acid for circumventing breast cancer resistance to tamoxifen: integrative bioinformatics analysis. Asian Pac J Cancer Prev. 2022;23:2341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chimplee S, Graidist P, Srisawat T, Sukrong S, Bissanum R, Kanokwiroon K. Anti-breast cancer potential of frullanolide from Grangea maderaspatana plant by inducing apoptosis. Oncol Lett. 2019;17:5283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Heinrich M, Mah J, Amirkia V. Alkaloids used as medicines: structural phytochemistry meets biodiversity—an update and forward look. Molecules. 2021;26:1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang HC, Chen ST, Chien SY, Kuo SJ, Tsai HT, Chen DR. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Hum Exp Toxicol. 2011;30:1657–65.

    Article  CAS  PubMed  Google Scholar 

  64. Wu D, Jia H, Zhang Z, Li S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β-catenin signaling pathway. Mol Med Rep. 2020;22:4868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen M, Xiao C, Jiang W, Yang W, Qin Q, Tan Q, et al. Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway. Drug Des Devel Ther. 2021;15:125–40. Available from: https://www.dovepress.com/capsaicin-inhibits-proliferation-and-induces-apoptosis-in-breast-cance-peer-reviewed-article-DDDT

  66. Han B, Wang K, Tu Y, Tan L, He C. Low-dose berberine attenuates the anti-breast cancer activity of chemotherapeutic agents via induction of autophagy and antioxidation. Dose-Response. 2020. https://doi.org/10.1177/1559325820939751.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pan X, Song Z, Cui Y, Qi M, Wu G, Wang M. Enhancement of sensitivity to tamoxifen by berberine in breast cancer cells by inhibiting ER-α36 expression. Iran J Pharm Res. 2022;21: e126919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun Y, Zhou QQ, Chen F, Gao X, Yang L, Jin X, et al. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol Res. 2023;193: 106817. https://doi.org/10.1016/j.phrs.2023.106817.

    Article  CAS  PubMed  Google Scholar 

  69. Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015;357:129–40.

    Article  CAS  PubMed  Google Scholar 

  70. Buranrat B, Junking M. Piperine suppresses growth and migration of human breast cancer cells through attenuation of Rac1 expression. Asian Pac J Trop Biomed. 2022;12:39.

    Article  CAS  Google Scholar 

  71. Jiang F, Ren S, Chen Y, Zhang A, Zhu Y, Zhang Z, et al. Fangchinoline exerts antitumour activity by suppressing the EGFR-PI3K/AKT signalling pathway in colon adenocarcinoma. Oncol Rep. 2021. https://doi.org/10.3892/or.2020.7857.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xing Z, Zhang Y, Zhang X, Yang Y, Ma Y, Pang D. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation. Phytother Res. 2013;27:1790–4.

    Article  CAS  PubMed  Google Scholar 

  73. Wang C-D, Yuan C-F, Bu Y-Q, Wu X-M, Wan J-Y, Zhang L, et al. Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/ cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells. Asian Pac J Cancer Prev. 2014;15:769–73.

    Article  CAS  PubMed  Google Scholar 

  74. Wang B, Xing Z, Wang F, Yuan X, Zhang Y. Fangchinoline inhibits migration and causes apoptosis of human breast cancer MDA-MB-231 cells. Oncol Lett. 2017;14:5307–12.

    PubMed  PubMed Central  Google Scholar 

  75. Ke Y, Ye K, Grossniklaus HE, Archer DR, Joshi HC, Kapp JA. Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immunol Immunother. 2000;49:217–25.

    Article  CAS  PubMed  Google Scholar 

  76. Quisbert-Valenzuela EO, Calaf GM. Apoptotic effect of noscapine in breast cancer cell lines. Int J Oncol. 2016;48:2666–74.

    Article  CAS  PubMed  Google Scholar 

  77. Chougule MB, Patel AR, Jackson T, Singh M. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer. PLoS ONE. 2011;6: e17733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Esnaashari SS, Muhammadnejad S, Amanpour S, Amani A. A combinational approach towards treatment of breast cancer: an analysis of noscapine-loaded polymeric nanoparticles and doxorubicin. AAPS PharmSciTech. 2020;21:166.

    Article  CAS  PubMed  Google Scholar 

  79. Lu L, Huang R, Wu Y, Jin J-M, Chen H-Z, Zhang L-J, et al. Brucine: a review of phytochemistry, pharmacology, and toxicology. Front Pharmacol. 2020;11:377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li M, Li P, Zhang M, Ma F. Brucine suppresses breast cancer metastasis via inhibiting epithelial mesenchymal transition and matrix metalloproteinases expressions. Chin J Integr Med. 2018;24:40–6.

    Article  CAS  PubMed  Google Scholar 

  81. Xu M-R, Wei P-F, Suo M-Z, Hu Y, Ding W, Su L, et al. Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231. Biomed Res Int. 2019;2019:6543230.

    PubMed  PubMed Central  Google Scholar 

  82. Grabarska A, Wróblewska-Łuczka P, Kukula-Koch W, Łuszczki JJ, Kalpoutzakis E, Adamczuk G, et al. Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules. 2021;26:6253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elamin MH, Elmahi AB, Daghestani MH, Al-Olayan EM, Al-Ajmi RA, Alkhuriji AF, et al. Synergistic anti-breast-cancer effects of combined treatment with oleuropein and doxorubicin in vivo. Altern Ther Health Med. 2019;25:17–24.

    PubMed  Google Scholar 

  84. Ativui S, Danquah CA, Osafo N, Adu W, Ofori M. Palmatine sensitizes chemoresistant triple negative breast cancer cells via efflux inhibition of multidrug resistant protein 1. Sci African. 2021;14: e01022.

    CAS  Google Scholar 

  85. Li ZH, Gao J, Hu PH, Xiong JP. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression. Oncol Lett. 2017;14:1979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tran LTT, Dang NYT, Le Nguyen NT, Nguyen HT, Ho DV, Do TT, et al. In silico and in vitro evaluation of alkaloids from Goniothalamus elegans Ast. for breast cancer treatment. Nat Prod Commun. 2022. https://doi.org/10.1177/1934578X221088110.

    Article  Google Scholar 

  87. Das M, Kandimalla R, Gogoi B, Dutta KN, Choudhury P, Devi R, et al. Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacol Res. 2019;146: 104330.

    Article  CAS  PubMed  Google Scholar 

  88. Satyavarapu EM, Sinha PK, Mandal C. Preclinical development of mahanine-enriched fraction from indian spice murraya koenigii for the management of cancer: efficacy, temperature/pH stability, pharmacokinetics, acute and chronic toxicity (14–180 Days) studies. Biomed Res Int. 2020;2020:1–18.

    Google Scholar 

  89. Ghauri MA, Su Q, Ullah A, Wang J, Sarwar A, Wu Q, et al. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine. 2021;84: 153500.

    Article  CAS  PubMed  Google Scholar 

  90. Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine inhibition of TNF-α-induced CCL2, IKBKE/NF-κB/ERK1/2 signaling pathway, and cell migration in human triple-negative breast cancer cells. Int J Mol Sci. 2022;23:8329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ren B, Kwah MX-Y, Liu C, Ma Z, Shanmugam MK, Ding L, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021;515:63–72.

    Article  CAS  PubMed  Google Scholar 

  92. Andreani C, Bartolacci C, Wijnant K, Crinelli R, Bianchi M, Magnani M, et al. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor. Aging (Albany NY). 2017;9:508–23.

    Article  CAS  PubMed  Google Scholar 

  93. Liang Z-J, Wan Y, Zhu D-D, Wang M-X, Jiang H-M, Huang D-L, et al. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Front Oncol. 2021;11:1–15.

    Google Scholar 

  94. Fu Y, Chang H, Peng X, Bai Q, Yi L, Zhou Y, et al. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS ONE. 2014;9:e102535.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Montalesi E, Cracco P, Acconcia F, Fiocchetti M, Iucci G, Battocchio C, et al. Resveratrol analogs and prodrugs differently affect the survival of breast cancer cells impairing estrogen/estrogen receptor α/neuroglobin pathway. Int J Mol Sci. 2023;24:2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zan L, Chen Q, Zhang L, Li X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered. 2019;10:374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Al-Shaeli SJ, Ethaeb AM, Brown JE. Anti-neoplastic effect of epigallocatechin gallate on breast cancer cells through glucose metabolism. J Phys Conf Ser. 2019;1234: 012073.

    Article  CAS  Google Scholar 

  98. Banerjee S, Mandal AKA. Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Front Genet. 2022;13: 995046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cai J, Sun H, Zheng B, Xie M, Xu C, Zhang G, et al. Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2020.11651.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phyther Res. 2014;28:1553–60.

    Article  CAS  Google Scholar 

  101. Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB, et al. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids Springer Vienna. 2018;50:1045–69. https://doi.org/10.1007/s00726-018-2581-z.

    Article  CAS  Google Scholar 

  102. Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, et al. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother. 2023. https://doi.org/10.1016/j.biopha.2023.114687.

    Article  PubMed  Google Scholar 

  103. Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol. 2020;885: 173419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahmoud MA, Okda TM, Omran GA, Abd-Alhaseeb MM. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J Appl Biomed. 2021;19:202–9.

    Article  PubMed  Google Scholar 

  105. Sp N, Kang DY, Lee J-M, Bae SW, Jang K-J. Potential antitumor effects of 6-gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells. Int J Mol Sci. 2021;22:4660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ediriweera MK, Moon JY, Nguyen YT-K, Cho SK. 10-Gingerol Targets Lipid Rafts Associated PI3K/Akt Signaling in Radio-Resistant Triple Negative Breast Cancer Cells. Molecules. 2020;25:3164.

  107. Wala K, Szlasa W, Sauer N, Kasperkiewicz-Wasilewska P, Szewczyk A, Saczko J, et al. Anticancer efficacy of 6-gingerol with paclitaxel against wild type of human breast adenocarcinoma. Molecules. 2022;27:2693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tu S-H, Chiou Y-S, Kalyanam N, Ho C-T, Chen L-C, Pan M-H. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA 2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct. 2017;8:1067–79.

    Article  CAS  PubMed  Google Scholar 

  109. Choudhury B, Kandimalla R, Elancheran R, Bharali R, Kotoky J. Garcinia morella fruit, a promising source of antioxidant and anti-inflammatory agents induces breast cancer cell death via triggering apoptotic pathway. Biomed Pharmacother. 2018;103:562–73.

    Article  CAS  PubMed  Google Scholar 

  110. Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: new frontier for immuno-regulation and breast cancer control. Antioxidants. 2019;8:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, et al. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol. 2023;27: 101596.

    Article  CAS  PubMed  Google Scholar 

  112. Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer Targets Ther. 2018;10:89–100. Available from: https://www.dovepress.com/mechanism-of-metastasis-suppression-by-luteolin-in-breast-cancer-peer-reviewed-article-BCTT

  113. Lin D, Kuang G, Wan J, Zhang X, Li H, Gong X, et al. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep. 2017;37:895–902.

    Article  CAS  PubMed  Google Scholar 

  114. Tsai K-J, Tsai H-Y, Tsai C-C, Chen T-Y, Hsieh T-H, Chen C-L, et al. Luteolin inhibits breast cancer stemness and enhances chemosensitivity through the Nrf2-mediated pathway. Molecules. 2021;26:6452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Noori S, Tavirani MR, Deravi N, Rabbani MIM, Zarghi A. Naringenin enhances the anti-cancer effect of cyclophosphamide against mda-mb-231 breast cancer cells via targeting the stat3 signaling pathway. Iran J Pharm Res. 2020;19:122–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao Z, Jin G, Ge Y, Guo Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology. 2019;27:1021–36. https://doi.org/10.1007/s10787-018-00556-3.

    Article  CAS  PubMed  Google Scholar 

  117. Basta AH, Lotfy VF, Ghaly NS, Nabil M, Mohamed KM. Bioactivity evaluation of amino acid-conjugates with protein versus cellulose based conjugates and extracted flavonoids. J Drug Deliv Sci Technol. 2020;60: 101924.

    Article  CAS  Google Scholar 

  118. Atta EM, Hegab KH, Abdelgawad AAM, Youssef AA. Synthesis, characterization and cytotoxic activity of naturally isolated naringin-metal complexes. Saudi Pharm J. 2019;27:584–92.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yang D, Guo Q, Liang Y, Zhao Y, Tian X, Ye Y, et al. Wogonin induces cellular senescence in breast cancer via suppressing TXNRD2 expression. Arch Toxicol. 2020;94:3433–47.

    Article  CAS  PubMed  Google Scholar 

  120. Maryam R. Wogonin from scutellaria baicalensis-induced radioresistance in MCF-7 breast cancer cell line. Eurasian J Med Oncol. 2022. https://doi.org/10.14744/ejmo.2022.17217.

    Article  Google Scholar 

  121. Jiang H, Fan J, Cheng L, Hu P, Liu R. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive breast cancer cells. Onco Targets Ther. 2018;11:8153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao Q, Zhao M, Parris AB, Xing Y, Yang X. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells. Int J Oncol. 2016;49:1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shukla RP, Dewangan J, Urandur S, Banala VT, Diwedi M, Sharma S, et al. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Biomater Sci. 2020;8:1298–315.

    Article  CAS  PubMed  Google Scholar 

  124. Kim GY, Suh J, Jang J-H, Kim D-H, Park OJ, Park SK, et al. Genistein Inhibits Proliferation of BRCA1 Mutated Breast Cancer Cells: The GPR30-Akt Axis as a Potential Target. J Cancer Prev. 2019;24:197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Binienda A, Ziolkowska S, Pluciennik E. The anticancer properties of silibinin: its molecular mechanism and therapeutic effect in breast cancer. Anticancer Agents Med Chem. 2020;20:1787–96.

    Article  CAS  PubMed  Google Scholar 

  126. Molavi O, Narimani F, Asiaee F, Sharifi S, Tarhriz V, Shayanfar A, et al. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm Biol. 2017;55:729–39.

    Article  CAS  PubMed  Google Scholar 

  127. Maasomi ZJ, Soltanahmadi YP, Dadashpour M, Alipour S, Abolhasani S, Zarghami N. Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pacific J Cancer Prev. 2017;18:1283.

    Google Scholar 

  128. Nawaz Q, Fuentes-Chandía M, Tharmalingam V, Ur Rehman MA, Leal-Egaña A, Boccaccini AR. Silibinin releasing mesoporous bioactive glass nanoparticles with potential for breast cancer therapy. Ceram Int. 2020. https://doi.org/10.2139/ssrn.3473993.

    Article  Google Scholar 

  129. Iqbal MA, Chattopadhyay S, Siddiqui FA, Ur Rehman A, Siddiqui S, Prakasam G, et al. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating EGFR-MYC-TXNIP axis: potential therapeutic implications. FEBS J. 2021;288:471–85.

    Article  CAS  PubMed  Google Scholar 

  130. Datta S, Saha P, Dey S, Sinha D. Natural Products as Chemosensitizers for Adjunct Therapy in Cancer Management. In: Kumar M, Sharma A, Kumar P, editors. Pharmacother Bot Cancer Chemoprevention. Singapore: Springer Singapore; 2020. p. 67–119.

    Google Scholar 

  131. Sharma P, Khan MA, Najmi AK, Chaturvedi S, Akhtar M. Myricetin-induced apoptosis in triple-negative breast cancer cells through inhibition of the PI3K/Akt/mTOR pathway. Med Oncol. 2022;39:248.

    Article  CAS  PubMed  Google Scholar 

  132. Han S-H, Lee J-H, Woo J-S, Jung G-H, Jung S-H, Han E-J, et al. Myricetin induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. Int J Mol Med. 2022;49:54.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sajedi N, Homayoun M, Mohammadi F, Soleimani M. Myricetin exerts its apoptotic effects on MCF-7 breast cancer cells through evoking the BRCA1-GADD45 pathway. Asian Pac J Cancer Prev. 2020. https://doi.org/10.31557/APJCP.2020.21.12.3461.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evidence-Based Complement Altern Med. 2018;2018:1–23.

    Article  Google Scholar 

  135. Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, et al. Natural health products (NHP’s) and natural compounds as therapeutic agents for the treatment of cancer; mechanisms of anti-cancer activity of natural compounds and overall trends. Int J Mol Sci. 2020;21:1–32.

    Article  Google Scholar 

  136. More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, et al. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med Drug Discov. 2021;10: 100082.

    Article  CAS  Google Scholar 

  137. Koh Y-C, Ho C-T, Pan M-H. Recent advances in cancer chemoprevention with phytochemicals. J food drug Anal. 2020;28:14–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Science and Technology (DST), Government of India for providing Departmental DST-FIST grant (SR/FST/LSI-656/2016) to the Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, India.

Author information

Authors and Affiliations

Authors

Contributions

P.S. conceptualized and supervised the overall studies, critically reviewed, and wrote the final draft of the manuscript. K.G. performed data curing. SKK. performed data curing. SM. contributed toward review and editing. S.T. provided broad direction for the study, supervised, critically reviewed, and finally approved the manuscript.

Corresponding author

Correspondence to Suresh Thareja.

Ethics declarations

Conflict of interest

The authors have no ethical, legal, and financial conflicts related to the article.

Consent for publication

All authors read and approved the manuscript to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, K., Khandai, S.K. et al. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 41, 45 (2024). https://doi.org/10.1007/s12032-023-02269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02269-2

Keywords

Navigation