Skip to main content

Advertisement

Log in

Evaluation of immune density, PD-L1, and CXCR4 expressions in metaplastic breast carcinoma to predict potential immunotherapy benefit

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Metaplastic breast carcinoma (MBC) -rare but fatal subtype of invasive breast carcinomas- provides limited benefit from conventional triple-negative breast carcinoma chemotherapy. We aimed to determine the immune density of this tumor and to evaluate of programmed death-ligand 1 (PD-L1) and chemokine receptor type 4 (CXCR4) expressions to determine whether it would benefit from immunotherapy. Clinicopathological characteristics of 85 patients diagnosed as MBC between 1997 and 2017 were retrospectively assessed. We evaluated the immunohistochemical expression of PD-L1 and CXCR4, and the extent of tumour infiltrating lymphocytes (TILs), with survival data. TILs groups were statistically significantly associated with lymph node status, histological subtype, squamous component, local recurrence and/or systemic metastasis, and disease-related deaths (p < 0.05). PD-L1 positivity in immune cells (ICs) has a statistically significant relationship with the presence of squamous component (p = 0.011) and HER2 positivity (p = 0.031). PD-L1 positivity in tumor cells (TCs) was found to be significantly more frequent in high-TILs density (p = 0.003). PD-L1 combined positive score was significantly associated with the tumors containing high-TILs density (p = 0.012) and squamous component (p = 0.035). Disease-free and disease-specific survival rates were found to be longer for the cases displaying PD-L1 positivity in ICs; and also PD-L1 positivity in ICs was found to be an independent prognostic factor. When the expression of CXCR4 was compared with clinicopathological and survival parameters, no statistically significant association was found (p > 0.05). Based on the results of this retrospective study, PD-L1 and TILs appear to be prognostic. This study provides rationale for further studies to determine whether a subset of patients with metaplastic breast cancer could derive a meaningful benefit from immune-targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reis-Filho JS, Gobbi H, McCart Reed AE, Rakha EA, Shin SJ, Sotiriou C, Vincent-Salomon A. Metaplastic Carcinoma. In: WHO Classification of Breast Tumours. Fifth Edition. International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France; 2019:134–138.

  2. Liao HY, Zhang WW, Sun JY, Li FY, He ZY, Wu SG. The clinicopathological features and survival outcomes of different histological subtypes in triple-negative breast cancer. J Cancer. 2018;9:296–303. https://doi.org/10.7150/jca.22280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pezzi CM, Patel-Parekh L, Cole K, Franko J, Klimberg VS, Bland K. Characteristics and treatment of metaplastic breast cancer: analysis of 892 cases from the National Cancer Data Base. Ann Surg Oncol. 2007;14(1):166–73. https://doi.org/10.1245/s10434-006-9124-7.

    Article  PubMed  Google Scholar 

  4. Dwyer JB, Clark BZ. Low-grade fibromatosis-like spindle cell carcinoma of the breast. Arch Pathol Lab Med. 2015;139(4):552–7. https://doi.org/10.5858/arpa.2013-0555-RS.

    Article  CAS  PubMed  Google Scholar 

  5. Tzanninis IG, Kotteas EA, Ntanasis-Stathopoulos I, Kontogianni P, Fotopoulos G. Management and outcomes in metaplastic breast cancer. Clin Breast Cancer. 2016;16(6):437–43. https://doi.org/10.1016/j.clbc.2016.06.002.

    Article  Google Scholar 

  6. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. https://doi.org/10.1038/s41573-018-0007-y.

    Article  CAS  Google Scholar 

  7. Nurieva RI, Liu X, Dong C. Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev. 2009;229(1):88–100. https://doi.org/10.1111/j.1600-065X.2009.00769.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, IMpassion130 Trial Investigators. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615.

    Article  CAS  PubMed  Google Scholar 

  10. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, Iwata H, Masuda N, Otero MT, Gokmen E, Loi S, Guo Z, Zhao J, Aktan G, Karantza V, Schmid P, KEYNOTE-355 Investigators. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9.

    Article  PubMed  Google Scholar 

  11. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Foukakis T, Fasching PA, Cardoso F, Untch M, Jia L, Karantza V, Zhao J, Aktan G, Dent R, O’Shaughnessy J, KEYNOTE-522 Investigators. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21. https://doi.org/10.1056/NEJMoa1910549.

    Article  CAS  PubMed  Google Scholar 

  12. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Untch M, Fasching PA, Cardoso F, Andersen J, Patt D, Danso M, Ferreira M, Mouret-Reynier MA, Im SA, Ahn JH, Gion M, Baron-Hay S, Boileau JF, Ding Y, Tryfonidis K, Aktan G, Karantza V, O’Shaughnessy J, KEYNOTE-522 Investigators. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386(6):556–67. https://doi.org/10.1056/NEJMoa2112651.

    Article  CAS  Google Scholar 

  13. Shah M, Osgood CL, Amatya AK, Fiero MH, Pierce WF, Nair A, Herz J, Robertson KJ, Mixter BD, Tang S, Pazdur R, Beaver JA, Amiri-Kordestani L. FDA approval summary: Pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple-negative breast cancer. Clin Cancer Res. 2022;28(24):5249–53. https://doi.org/10.1158/1078-0432.CCR-22-1110.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82. https://doi.org/10.1016/B978-0-12-411638-2.00002-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Côté D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17. https://doi.org/10.1182/blood-2006-07-035857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee D, Zhao J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3(1):46–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin F, Brockmeier U, Otterbach F, Metzen E. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res. 2012;10(8):1021–31. https://doi.org/10.1158/1541-7786.MCR-11-0498.

    Article  CAS  PubMed  Google Scholar 

  18. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10. https://doi.org/10.1111/j.1365-2559.1991.tb00229.x.

    Article  CAS  PubMed  Google Scholar 

  19. Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group. Adv Anat Pathol. 2017;24(6):311–35. https://doi.org/10.1097/pap.0000000000000161.

    Article  PubMed Central  Google Scholar 

  20. Rapoport BL, Nayler S, Mlecnik B, Smit T, Heyman L, Bouquet I, Martel M, Galon J, Benn CA, Anderson R. Tumor-infiltrating lymphocytes (TILs) in early breast cancer patients: high CD3+, CD8+, and immunoscore are associated with a pathological complete response. Cancers (Basel). 2022;14(10):2525. https://doi.org/10.3390/cancers14102525.

    Article  CAS  PubMed  Google Scholar 

  21. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, Schmitt WD, Blohmer JU, Karn T, Pfitzner BM, Kümmel S, Engels K, Schneeweiss A, Hartmann A, Noske A, Fasching PA, Jackisch C, van Mackelenbergh M, Sinn P, Schem C, Hanusch C, Untch M, Loibl S. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50. https://doi.org/10.1016/S1470-2045(17)30904-X.

    Article  PubMed  Google Scholar 

  22. Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5. https://doi.org/10.1245/s10434-018-6486-6.

    Article  Google Scholar 

  23. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, Sahin A. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93. https://doi.org/10.1158/1078-0432.CCR-05-0014.

    Article  CAS  PubMed  Google Scholar 

  24. Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C, Soria JC, Cristofanilli M. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol. 2006;17(6):945–51. https://doi.org/10.1093/annonc/mdl053.

    Article  CAS  PubMed  Google Scholar 

  25. Cabioglu N, Sahin AA, Morandi P, Meric-Bernstam F, Islam R, Lin HY, Bucana CD, Gonzalez-Angulo AM, Hortobagyi GN, Cristofanilli M. Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann Oncol. 2009;20(6):1013–9. https://doi.org/10.1093/annonc/mdn740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan PH, Tse GM, Badve S, Ellis IO. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207. https://doi.org/10.1186/bcr2607.

    Article  PubMed Central  Google Scholar 

  27. Rakha EA, Tan PH, Varga Z, Tse GM, Shaaban AM, Climent F, van Deurzen CH, Purnell D, Dodwell D, Chan T, Ellis IO. Prognostic factors in metaplastic carcinoma of the breast: a multi-institutional study. Br J Cancer. 2015;112(2):283–9. https://doi.org/10.1038/bjc.2014.592.

    Article  CAS  PubMed  Google Scholar 

  28. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, Syrjänen K. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28A(4–5):859–64. https://doi.org/10.1016/0959-8049(92)90134-n.

    Article  CAS  PubMed  Google Scholar 

  29. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69. https://doi.org/10.1200/JCO.18.01010.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chao X, Liu L, Sun P, Yang X, Li M, Luo R, Huang Y, He J, Yun J. Immune parameters associated with survival in metaplastic breast cancer. Breast Cancer Res. 2020;22(1):92. https://doi.org/10.1186/s13058-020-01330-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joneja U, Vranic S, Swensen J, Feldman R, Chen W, Kimbrough J, Xiao N, Reddy S, Palazzo J, Gatalica Z. Comprehensive profiling of metaplastic breast carcinomas reveals frequent overexpression of programmed death-ligand 1. J Clin Pathol. 2017;70(3):255–9. https://doi.org/10.1136/jclinpath-2016-203874.

    Article  CAS  Google Scholar 

  32. Morgan E, Suresh A, Ganju A, Stover DG, Wesolowski R, Sardesai S, Noonan A, Reinbolt R, VanDeusen J, Williams N, Cherian MA, Li Z, Young G, Palettas M, Stephens J, Liu J, Luff A, Ramaswamy B, Lustberg M. Assessment of outcomes and novel immune biomarkers in metaplastic breast cancer: a single institution retrospective study. World J Surg Oncol. 2020;18(1):11. https://doi.org/10.1186/s12957-019-1780-8.

    Article  PubMed Central  Google Scholar 

  33. Lien HC, Lee YH, Chen IC, Lin CH, Chen TW, Lu YT, Lu YS. Tumor-infiltrating lymphocyte abundance and programmed death-ligand 1 expression in metaplastic breast carcinoma: implications for distinct immune microenvironments in different metaplastic components. Virchows Arch. 2021;478(4):669–78. https://doi.org/10.1007/s00428-020-02954-x.

    Article  CAS  PubMed  Google Scholar 

  34. Voutilainen S, Heikkilä P, Bartkova J, Nevanlinna H, Blomqvist C, Bartek J, Mattson J. Markers associated with genomic instability, immunogenicity and immune therapy responsiveness in Metaplastic carcinoma of the breast: Expression of γH2AX, pRPA2, P53, PD-L1 and tumor infiltrating lymphocytes in 76 cases. BMC Cancer. 2022;22(1):1298. https://doi.org/10.1186/s12885-022-10408-7.

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang C, Zhu H, Zhou Y, Mao F, Lin Y, Pan B, Zhang X, Xu Q, Huang X, Sun Q. Prognostic value of PD-L1 in breast cancer: a meta-analysis. Breast J. 2017;23(4):436–43. https://doi.org/10.1111/tbj.12753.

    Article  CAS  PubMed  Google Scholar 

  36. Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, Kennedy CW, Gluch L, Carmalt H, Mak C, Warrier S, Gee HE, Chan C, McLean A, Walker E, McNeil CM, Beith JM, Swarbrick A, Scolyer RA, O’Toole SA. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 2016;69(1):25–34. https://doi.org/10.1111/his.12904.

    Article  PubMed  Google Scholar 

  37. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6. https://doi.org/10.1038/35065016.

    Article  PubMed  Google Scholar 

  38. Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci. 2002;59(9):1491–502. https://doi.org/10.1007/s00018-002-8524-5.

    Article  CAS  PubMed  Google Scholar 

  39. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8. https://doi.org/10.1074/jbc.M300609200.

    Article  CAS  PubMed  Google Scholar 

  40. Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res. 2004;2(6):327–38 (PMID: 15235108).

    Article  CAS  PubMed  Google Scholar 

  41. Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene. 2004;23(1):157–67. https://doi.org/10.1038/sj.onc.1206910.

    Article  CAS  PubMed  Google Scholar 

  42. Salvucci O, Bouchard A, Baccarelli A, Deschênes J, Sauter G, Simon R, Bianchi R, Basik M. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat. 2006;97(3):275–83. https://doi.org/10.1007/s10549-005-9121-8.

    Article  CAS  PubMed  Google Scholar 

  43. Lefort S, Thuleau A, Kieffer Y, Sirven P, Bieche I, Marangoni E, Vincent-Salomon A, Mechta-Grigoriou F. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene. 2017;36(9):1211–22. https://doi.org/10.1038/onc.2016.284.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Ni C, Chen W, Wu P, Wang Z, Yin J, Huang J, Qiu F. Expression of CXCR4 and breast cancer prognosis: a systematic review and meta-analysis. BMC Cancer. 2014;29(14):49. https://doi.org/10.1186/1471-2407-14-49.

    Article  CAS  Google Scholar 

Download references

Funding

This Project was supported by the Istanbul University, Department of Scientific Research Projects (ID27023/TOA-2017–27023) and Istanbul Breast Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidar Bagbudar.

Ethics declarations

Conflict of interest

Author Bagbudar declares that she has no conflict of interest. Author Karanlık declares that he has no conflict of interest. Author Cabioglu declares that she has no conflict of interest. Author Bayram declares that she has no conflict of interest. Author Tükenmez declares that he has no conflict of interest. Author Aydıner declares that he has no conflict of interest. Author Yavuz declares that he has no conflict of interest. Author Onder declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagbudar, S., Karanlık, H., Cabioglu, N. et al. Evaluation of immune density, PD-L1, and CXCR4 expressions in metaplastic breast carcinoma to predict potential immunotherapy benefit. Med Oncol 41, 18 (2024). https://doi.org/10.1007/s12032-023-02243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02243-y

Keywords

Navigation