Skip to main content

Advertisement

Log in

Synergistic anti-proliferative and apoptotic effect of NVP-BEZ235 and curcumin on human SH-SY5Y neuroblastoma cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Neuroblastoma, a tumor of the sympathetic nervous system, is one of the most common tumors found in children. Most patients develop resistance to therapy and show poor prognosis, thus there is a need of novel therapeutic agents for the treatment of neuroblastoma. NVP-BEZ235 is a dual Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor that induces apoptosis and suppresses the growth of cancer. Curcumin acts as an anticancer agent in certain cancers. This study investigated the synergetic effect of NVP-BEZ235 and curcumin against neuroblastoma SH-SY5Y cell line. In the current study, the synergic effect of NVP-BEZ235 and curcumin in SH-SY5Y was examined in terms of the cell growth by cell viability and colony forming assay, cell cycle and apoptotic cell death by flow cytometry and mRNA expression levels by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). Curcumin, NVP-BEZ235 or a combination of both, showed cytotoxicity in a dose and time dependent manner in SH-SY5Y cells. 10 µM curcumin and 200 nM NVP-BEZ235 were chosen as combination therapy, as the combination index showed synergism. Colony forming assay showed decrease in cell growth in combination group. The cell cycle distribution for combination group demonstrated a decrease in G0/G1 phase at 48 h. Annexin V showed an anticancer effect in combination group when compared to control group. Moreover, qRT-PCR results showed a significant increase in caspase 3, caspase 7, Bax and p53 genes, while a decrease in Bcl-2 gene expression levels. These findings suggest that combination therapy of NVP-BEZ235 and curcumin may be a promising therapeutic candidate for treatment of neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the present study are available from the corresponding author upon reasonable request.

References

  1. Olsen RR, Otero JH, García-López J, Wallace K, Finkelstein D, Rehg JE, et al. MYCN induces neuroblastoma in primary neural crest cells. Oncogens. 2017;36:5075–82.

    Article  CAS  Google Scholar 

  2. Cheung NKV, Dyer MA. Neuroblastoma: developmental biology, cancer genomics, and immunotherapy. Nat Rev Cancer. 2013;13:397.

    Article  CAS  PubMed Central  Google Scholar 

  3. Zafar A, Wang W, Liu G, Xian W, McKeon F, Zhou J, et al. Targeting the p53-MDM2 pathway for neuroblastoma therapy: rays of hope. Cancer Lett. 2021;496:16–29.

    Article  CAS  Google Scholar 

  4. Wang Y, Wang L, Guan S, Cao W, Wang H, Chen Z, et al. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Sci Rep. 2016. https://doi.org/10.1038/srep19423.

    Article  PubMed Central  Google Scholar 

  5. Beck JT, Ismail A, Tolomeo C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev. 2014;40:980–9.

    Article  CAS  Google Scholar 

  6. Altomare DA, Hui QW, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004;23:5853–7.

    Article  CAS  Google Scholar 

  7. Mei H, Wang Y, Lin Z, Tong Q. The mTOR signaling pathway in pediatric neuroblastoma. Cancer Biol Ther. 2013;30:605–15.

    CAS  Google Scholar 

  8. Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther. 2011;11:938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fatehi D, Soltani A, Ghatrehsamani M. SRT1720, a potential sensitizer for radiotherapy and cytotoxicity effects of NVB-BEZ235 in metastatic breast cancer cells. Pathol Res Pract. 2018;214:889–95.

    Article  CAS  PubMed  Google Scholar 

  10. Xie J, Wang X, Proud CG. mTOR inhibitors in cancer therapy. F1000Res. 2016;5:2078.

    Article  Google Scholar 

  11. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.

    Article  CAS  PubMed  Google Scholar 

  12. Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB, et al. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res. 2010;16:3628–38. https://doi.org/10.1158/1078-0432.CCR-09-3022.

    Article  CAS  PubMed Central  Google Scholar 

  13. Liu SL, Liu Z, Di Zhang L, Zhu HQ, Guo JH, Zhao M, et al. GSK3β-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle. 2017;16:2386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging. 2009;1:988–1007.

    Article  PubMed Central  Google Scholar 

  15. Agrawal DK, Mishra PK. Curcumin and its analogues: potential anticancer agents. Med Res Rev. 2010;30:818–60. https://doi.org/10.1002/med.20188.

    Article  CAS  PubMed  Google Scholar 

  16. Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11:2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules. 2015;20:2728–69.

    Article  PubMed Central  Google Scholar 

  18. Ye Z, Chen D, Zheng R, Chen H, Xu T, Wang C, et al. Curcumin induced G2/M cycle arrest in SK-N-SH neuroblastoma cells through the ROS-mediated p53 signaling pathway. J Food Biochem. 2021;45: e13888.

    Article  CAS  PubMed  Google Scholar 

  19. Picone P, Nuzzo D, Caruana L, Messina E, Scafidi V, Di Carlo M. Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation. Free Radic Res. 2014;48:1397–408.

    Article  CAS  PubMed  Google Scholar 

  20. Pisano M, Pagnan G, Dettori MA, Cossu S, Caffa I, Sassu I, et al. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol Cancer. 2010;9:1–12. https://doi.org/10.1186/1476-4598-9-137.

    Article  CAS  Google Scholar 

  21. Namkaew J, Jaroonwitchawan T, Rujanapun N, Saelee J, Noisa P. Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell Dev Biol Anim. 2018;54:629–39. https://doi.org/10.1007/s11626-018-0288-9.

    Article  CAS  PubMed  Google Scholar 

  22. Jara JA, Rojas D, Castro-Castillo V, Fuentes-Retamal S, Sandoval-Acuña C, Parra E, et al. Novel benzoate-lipophilic cations selectively induce cell death in human colorectal cancer cell lines. Toxicol in Vitro. 2020;65: 104814.

    Article  CAS  PubMed  Google Scholar 

  23. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  24. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu H, Shi Y, Jiao X, Yang G, Wang R, Yuan Y. Synergistic antitumor effect of dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with cisplatin on drug-resistant non-small cell lung cancer cell. Oncol Lett. 2020. https://doi.org/10.3892/ol.2020.12189.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    Article  PubMed  Google Scholar 

  27. Modak S, Cheung NKV. Neuroblastoma: therapeutic strategies for a clinical enigma. Cancer Treat Rev. 2010;24:307–17.

    Article  Google Scholar 

  28. Fong A, Park JR. High-risk neuroblastoma: a therapy in evolution. Pediatr Hematol Oncol. 2009;26:539–48.

    Article  CAS  PubMed  Google Scholar 

  29. Fine HA, Keith G Dear ll B, Loefler lay S, Black PM, Canellos GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Available from: https://onlinelibrary.wiley.com/terms-and-conditions

  30. Balmaceda C, Peereboom D, Pannullo S, Cheung YKK, Fisher PG, Alavi J, et al. Multi-institutional phase II study of temozolomide administered twice daily in the treatment of recurrent high-grade gliomas. Cancer. 2008;112:1139–46.

    Article  CAS  PubMed  Google Scholar 

  31. Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–75.

    Article  CAS  Google Scholar 

  32. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.

    Article  CAS  PubMed  Google Scholar 

  33. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chanthery YH, Gustafson WC, Itsara M, Persson A, Hackett CS, Grimmer M, et al. Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma. Sci Transl Med. 2012;4:1153.

    Article  Google Scholar 

  35. Westhoff MA, Faham N, Marx D, Nonnenmacher L, Jennewein C, Enzenmüller S, et al. Sequential dosing in chemosensitization: targeting the PI3K/Akt/mTOR pathway in neuroblastoma. PLoS ONE. 2013;8:e83128.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Serra V, Markman B, Scaltriti M, Eichhorn PJA, Valero V, Guzman M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68:8022–30.

    Article  CAS  PubMed  Google Scholar 

  37. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24:139–45.

    Article  CAS  Google Scholar 

  38. Nunez R. DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol. 2001;3:67–70.

    CAS  PubMed  Google Scholar 

  39. Masamha CP, Benbrook DM. Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res. 2009;69:6565–72.

    Article  CAS  PubMed  Google Scholar 

  40. Seo BR, Min KJ, Cho IJ, Kim SC, Kwon TK. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability. PLoS ONE. 2014;9:e95588.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: implication for cancer therapy. Life Sci. 2020;255:117481.

    Article  CAS  PubMed  Google Scholar 

  42. Sukumari-Ramesh S, Bentley JN, Laird MD, Singh N, Vender JR, Dhandapani KM. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int J Dev Neurosci. 2011;29:701–10.

    Article  CAS  PubMed  Google Scholar 

  43. Kagawa S, Fujiwara T, Hizuta A, Yasuda T, Zhang W-W, Roth JA, et al. p53 expression overcomes p21 WAF1/CIP1-mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene. 1997. https://doi.org/10.1038/sj.onc.1201362.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SH-SY5Y and HUVEC cell lines were a kind gift from Prof. F. Sahin at Yeditepe University. In vitro cell culture experiments were conducted in Department of Molecular Biology and Genetics, at Istanbul Sabahattin Zaim University.

Funding

This work was supported by the Scientific Research Project (BAP) of Istanbul Sabahattin Zaim University with the grant number BAP:1000-102.

Author information

Authors and Affiliations

Authors

Contributions

FC Conceptualization, methodology, investigation of in vitro cell culture studies and writing- original draft. SK Methodology, investigation of cell viability and cell cycle studies, and writing- original draft. HA Resources, supervised data analysis, reviewing and revising the manuscript. ZBB Design the study, guided the conduct of studies, funding acquisition, writing and revising the manuscript.

Corresponding author

Correspondence to Zeynep Busra Bolat.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

The authors confirm that no ethical approval is required in the study.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, F., Kosba, S., Abdik, H. et al. Synergistic anti-proliferative and apoptotic effect of NVP-BEZ235 and curcumin on human SH-SY5Y neuroblastoma cells. Med Oncol 41, 11 (2024). https://doi.org/10.1007/s12032-023-02239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02239-8

Keywords

Navigation