Skip to main content

Advertisement

Log in

Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Neuroblastoma is the most common cancer of the sympathetic nervous system in children. Here, the influences of curcumin on survival, apoptosis, migration, and its combined effects with doxorubicin were investigated in SH-SY5Y cells by cell survival assay, flow cytometry, migration assays, and RT-PCR. Curcumin inhibited SH-SY5Y cell growth and induced apoptosis in dose- and time-dependent manners. This apoptotic induction relied on the upregulation of p53 and p21. Moreover, the treatment of curcumin for 24 h significantly suppressed cell migration, together with the downregulation of matrix metalloproteinase-2 (MMP-2) and upregulation of tissue inhibitor of metalloproteinases-1 (TIMP-1). The combination of curcumin augmented the anticancer activity of doxorubicin and significantly induced apoptosis. Pretreatment with curcumin increased the fraction of doxorubicin-induced apoptotic cells from 21.76 ± 0.50 to 57.74 ± 2.68%. Co-treatment with doxorubicin plus curcumin further inhibited 3D tumor migration. Altogether, the results suggest that curcumin suppresses growth and migration of SH-SY5Y cells and enhances the anticancer activity of doxorubicin. The addition of curcumin to therapeutic regimens may be promising for the treatment of neuroblastomas if a number of problems related to its in vivo bioavailability can be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  • Ara T, DeClerck YA (2006) Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev 25:645–657

    Article  PubMed  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bimonte S, Barbieri A, Palma G et al (2013) Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. Biomed Res Int 2013:810423

    PubMed  PubMed Central  Google Scholar 

  • Bimonte S, Barbieri A, Leongito M, et al (2016) Curcumin AntiCancer Studies in Pancreatic Cancer. Nutrients 8:433–444

    Article  CAS  PubMed Central  Google Scholar 

  • Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  CAS  PubMed  Google Scholar 

  • Caley MP, Martins VL, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care (New Rochelle) 4:225–234

    Article  Google Scholar 

  • Cao L, Liu J, Zhang L, Xiao X, Li W (2016) Curcumin inhibits H2O2-induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-kappaB pathway. Oncol Rep 36:2245–2251

    Article  CAS  PubMed  Google Scholar 

  • Chanvorachote P, Pongrakhananon V, Wannachaiyasit S, Luanpitpong S, Rojanasakul Y, Nimmannit U (2009) Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation. Cancer Investig 27:624–635

    Article  CAS  Google Scholar 

  • Chen QH (2015) Curcumin-based anti-prostate cancer agents. Anti Cancer Agents Med Chem 15:138–156

    Article  CAS  Google Scholar 

  • Chen WC, Lai YA, Lin YC, Ma JW, Huang LF, Yang NS, Ho CT, Kuo SC, Way TD (2013) Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-beta and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem 61:11817–11824

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Gao Q, Chen K et al (2015a) Curcumin suppresses migration and invasion of human endometrial carcinoma cells. Oncol Lett 10:1297–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Lou X, Zhang Z, Ingram P, Yoon E (2015b) High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci Rep 5:12175

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dano K, Romer J, Nielsen BS et al (1999) Cancer invasion and tissue remodeling--cooperation of protease systems and cell types. APMIS 107:120–127

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 102:522–538

    Article  CAS  PubMed  Google Scholar 

  • DuBois SG, Kalika Y, Lukens JN et al (1999) Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol 21:181–189

    Article  CAS  PubMed  Google Scholar 

  • Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  • Freudlsperger C, Greten J, Schumacher U (2008) Curcumin induces apoptosis in human neuroblastoma cells via inhibition of NFkappaB. Anticancer Res 28:209–214

    CAS  PubMed  Google Scholar 

  • Ganeshan VR, Schor NF (2011) Pharmacologic management of high-risk neuroblastoma in children. Paediatr Drugs 13:245–255

    Article  PubMed  PubMed Central  Google Scholar 

  • George RE, Diller L, Bernstein ML (2010) Pharmacotherapy of neuroblastoma. Expert Opin Pharmacother 11:1467–1478

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  • Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  CAS  PubMed  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H et al (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    CAS  PubMed  Google Scholar 

  • Gou Q, Liu L, Wang C, Wu Q, Sun L, Yang X, Xie Y, Li P, Gong C (2015) Polymeric nanoassemblies entrapping curcumin overcome multidrug resistance in ovarian cancer. Colloids Surf B: Biointerfaces 126:26–34

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Kismali G, Aggarwal BB (2013) Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 39:2–13

    Article  CAS  Google Scholar 

  • Hara J (2012) Development of treatment strategies for advanced neuroblastoma. Int J Clin Oncol 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Hoehle SI, Pfeiffer E, Solyom AM et al (2006) Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J Agric Food Chem 54:756–764

    Article  CAS  PubMed  Google Scholar 

  • Jaroonwitchawan T, Chaicharoenaudomrung N, Namkaew J et al (2016) Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci Lett 636:40–47

    Article  CAS  PubMed  Google Scholar 

  • Ji JL, Huang XF, Zhu HL (2012) Curcumin and its formulations: potential anti-cancer agents. Anti Cancer Agents Med Chem 12:210–218

    Article  CAS  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153

    PubMed  Google Scholar 

  • Keshelava N, Seeger RC, Groshen S et al (1998) Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Cancer Res 58:5396–5405

    CAS  PubMed  Google Scholar 

  • Klippstein R, Bansal SS, Al-Jamal KT (2016) Doxorubicin enhances curcumin’s cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. Int J Pharm 514:169–175

    Article  CAS  PubMed  Google Scholar 

  • Kotchetkov R, Cinatl J, Blaheta R, Vogel JU, Karaskova J, Squire J, Hernáiz Driever P, Klingebiel T, Cinatl J Jr (2003) Development of resistance to vincristine and doxorubicin in neuroblastoma alters malignant properties and induces additional karyotype changes: a preclinical model. Int J Cancer 104:36–43

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Wang Z, Deng Z et al (2015) Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int J Clin Exp Med 8:8948–8957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, Lin JP, Ma YS, Wu CC, Chung JG (2009) Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor (VEGF). Cancer Lett 285:127–133

    Article  CAS  PubMed  Google Scholar 

  • Liontas A, Yeger H (2004) Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24:987–998

    CAS  PubMed  Google Scholar 

  • Lopez-Lazaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–S127

    PubMed  Google Scholar 

  • Lu Y, Wei C, Xi Z (2014) Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/beta-catenin pathway. In Vitro Cell Dev Biol Anim 50:840–850

    Article  CAS  PubMed  Google Scholar 

  • Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  • Misra R, Sahoo SK (2011) Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm 8:852–866

    Article  CAS  PubMed  Google Scholar 

  • Montgomery A, Adeyeni T, San K, Heuertz RM, Ezekiel UR (2016) Curcumin sensitizes silymarin to exert synergistic anticancer activity in colon cancer cells. J Cancer 7:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113:101–122

    Article  CAS  PubMed  Google Scholar 

  • Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224:53–65

    Article  CAS  PubMed  Google Scholar 

  • Nowicki M, Ostalska-Nowicka D, Miskowiak B (2006) Prognostic value of stage IV neuroblastoma metastatic immunophenotype in the bone marrow: preliminary report. J Clin Pathol 59:150–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odot J, Albert P, Carlier A, Tarpin M, Devy J, Madoulet C (2004) In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111:381–387

    Article  CAS  PubMed  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone D, Ardito F, Giannatempo G et al (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10:1615–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry MC, Demeule M, Regina A et al (2010) Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res 54:1192–1201

    CAS  PubMed  Google Scholar 

  • Picone P, Nuzzo D, Caruana L, Messina E, Scafidi V, di Carlo M (2014) Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation. Free Radic Res 48:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P (2009) Curcumin blocks brain tumor formation. Brain Res 1266:130–138

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Zurakowski D, Wischhusen J, Frauenhoffer C, Hooshmand S, Kulke M, Moses MA (2014) Urinary TIMP-1 and MMP-2 levels detect the presence of pancreatic malignancies. Br J Cancer 111:1772–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer M, Schaffer PM, Zidan J, Sela GB (2011) Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 14:588–597

    Article  CAS  PubMed  Google Scholar 

  • Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A, Buhrmann C (2015) Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer 15:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar S, Srivastava RK (2007) Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 30:905–918

    CAS  PubMed  Google Scholar 

  • Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, Nguyen M (2002) Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98:234–240

    Article  CAS  PubMed  Google Scholar 

  • Sohara Y, Shimada H, DeClerck YA (2005) Mechanisms of bone invasion and metastasis in human neuroblastoma. Cancer Lett 228:203–209

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram S, Edmund NA, Moore DT et al (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62:3868–3875

    CAS  PubMed  Google Scholar 

  • Sreenivasan S, Krishnakumar S (2015) Synergistic effect of curcumin in combination with anticancer agents in human retinoblastoma cancer cell lines. Curr Eye Res 40:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Sukumari-Ramesh S, Bentley JN, Laird MD, Singh N, Vender JR, Dhandapani KM (2011) Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int J Dev Neurosci 29:701–710

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li C, Guo H, Kern TS, Huang K, Zheng L (2011) Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One 6:e23194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wartenberg M, Ling FC, Muschen M et al (2003) Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J 17:503–505

    Article  CAS  PubMed  Google Scholar 

  • Xie YQ, Wu XB, Tang SQ (2014) Curcumin treatment alters ERK-1/2 signaling in vitro and inhibits nasopharyngeal carcinoma proliferation in mouse xenografts. Int J Clin Exp Med 7:108–114

    PubMed  PubMed Central  Google Scholar 

  • Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 853:183–189

    Article  CAS  Google Scholar 

  • Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13:535–541

    Article  CAS  PubMed  Google Scholar 

  • Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AMO, Moreira JCF (2012) The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem 23:591–601

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yin WK, Shi XD, Li Y (2011) Curcumin activates Wnt/beta-catenin signaling pathway through inhibiting the activity of GSK-3beta in APPswe transfected SY5Y cells. Eur J Pharm Sci 42:540–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Zhang L, Yu HX, Bao JD, Lu RR (2013) Curcumin inhibits the metastasis of K1 papillary thyroid cancer cells via modulating E-cadherin and matrix metalloproteinase-9 expression. Biotechnol Lett 35:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang D, Zhang W, Tang S, Han T, Zhu X, Liu A, Zhi T (2016) Clinical characteristics of infant neuroblastoma and a summary of treatment outcome. Oncol Lett 12:5356–5362

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Council of Thailand (NRCT), Suranaree University of Technology (SUT), and Office of the Higher Education Commission under the NRU Project of Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study, Parinya Noisa; performed the biological experiments, Jirapat Namkaew, Thiranut Jaroonwitchawan, Narawadee Rujanapun, and Jantip Saelee; statistical analysis, Jirapat Namkaew and Thiranut Jaroonwitchawan; provided resources, Narawadee Rujanapun; wrote the paper, Parinya Noisa and Thiranut Jaroonwitchawan. All authors read and proofed the final manuscript.

Corresponding author

Correspondence to Parinya Noisa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namkaew, J., Jaroonwitchawan, T., Rujanapun, N. et al. Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell.Dev.Biol.-Animal 54, 629–639 (2018). https://doi.org/10.1007/s11626-018-0288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0288-9

Keywords

Navigation