Skip to main content

Advertisement

Log in

The roles of P-selectin in cancer cachexia

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

P-selectin, a cell adhesion molecule of the selectin family, is expressed on the surface of activated endothelial cells (ECs) and platelets. Binding of P-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) supports the leukocytes capture and rolling on stimulated ECs and increases the aggregation of leukocytes and activated platelets. Cancer cachexia is a systemic inflammation disorder characterized by metabolic disturbances, reduced body weight, loss of appetite, fat depletion, and progressive muscle atrophy. Cachexia status is associated with increased pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), which activates ECs to release P-selectin. Single-nucleotide polymorphisms (SNPs) loci of P-selectin encoding gene SELP are associated with higher level of plasma P-selectin and increase the susceptibility to cachexia in cancer patients. Elevated P-selectin expression has been observed in the hypothalamus, liver, and gastrocnemius muscle in animal models with cancer cachexia. Increased P-selectin may cause excessive inflammatory processes, muscle atrophy, and blood hypercoagulation, thus facilitating the development of cancer cachexia. In this review, physiological functions of P-selectin and its potential roles in cancer cachexia have been summarized. We also discuss the therapeutic potential of P-selectin inhibitors for the treatment of cancer cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9. https://doi.org/10.1016/j.clnu.2008.06.013.

    Article  CAS  PubMed  Google Scholar 

  2. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. https://doi.org/10.1016/s1470-2045(10)70218-7.

    Article  PubMed  Google Scholar 

  3. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med. 1980;69:491–7. https://doi.org/10.1016/s0149-2918(05)80001-3.

    Article  CAS  PubMed  Google Scholar 

  4. Moses AW, Slater C, Preston T, Barber MD, Fearon KC. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer. 2004;90:996–1002. https://doi.org/10.1038/sj.bjc.6601620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avancini A, Trestini I, Tregnago D, Cavallo A, Bragato M, Bonaiuto C, et al. Multidisciplinary lifestyle intervention to manage pancreatic cancer-related cachexia: a case report. Future Sci OA. 2020;7:Fso659. https://doi.org/10.2144/fsoa-2020-0165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14:754–62. https://doi.org/10.1038/nrc3829.

    Article  CAS  PubMed  Google Scholar 

  7. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105. https://doi.org/10.1038/nrdp.2017.105.

    Article  PubMed  Google Scholar 

  8. Dillon EL, Basra G, Horstman AM, Casperson SL, Randolph KM, Durham WJ, et al. Cancer cachexia and anabolic interventions: a case report. J Cachexia Sarcopenia Muscle. 2012;3:253–63. https://doi.org/10.1007/s13539-012-0066-6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hou YC, Wang CJ, Chao YJ, Chen HY, Wang HC, Tung HL, et al. Elevated serum interleukin-8 level correlates with cancer-related cachexia and sarcopenia: an indicator for pancreatic cancer outcomes. J Clin Med. 2018. https://doi.org/10.3390/jcm7120502.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu SW, Pan HC, Hsu YH, Chang KC, Wu LW, Chen WY, et al. IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun. 2020;11:4611. https://doi.org/10.1038/s41467-020-18244-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jengelley DHA, Wang M, Narasimhan A, Rupert JE, Young AR, Zhong X, et al. Exogenous Oncostatin M induces cardiac dysfunction, musculoskeletal atrophy, and fibrosis. Cytokine. 2022;159:155972. https://doi.org/10.1016/j.cyto.2022.155972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lerner L, Hayes TG, Tao N, Krieger B, Feng B, Wu Z, et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle. 2015;6:317–24. https://doi.org/10.1002/jcsm.12033.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, et al. Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle. 2021;12:70–90. https://doi.org/10.1002/jcsm.12652.

    Article  PubMed  Google Scholar 

  14. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20:433–47. https://doi.org/10.1016/j.cmet.2014.06.011.

    Article  CAS  PubMed  Google Scholar 

  15. Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, et al. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med. 2020;26:1264–70. https://doi.org/10.1038/s41591-020-0945-x.

    Article  CAS  PubMed  Google Scholar 

  16. Jatoi A, Dakhil SR, Nguyen PL, Sloan JA, Kugler JW, Rowland KM Jr, et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North central cancer treatment group. Cancer. 2007;110:1396–403. https://doi.org/10.1002/cncr.22944.

    Article  CAS  PubMed  Google Scholar 

  17. Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer. 2010;68:234–9. https://doi.org/10.1016/j.lungcan.2009.06.020.

    Article  PubMed  Google Scholar 

  18. Cummings RD, Smith DF. The selectin family of carbohydrate-binding proteins: structure and importance of carbohydrate ligands for cell adhesion. BioEssays. 1992;14:849–56. https://doi.org/10.1002/bies.950141210.

    Article  CAS  PubMed  Google Scholar 

  19. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9:263–8. https://doi.org/10.1016/s1471-4914(03)00071-6.

    Article  CAS  PubMed  Google Scholar 

  20. Hartwell DW, Mayadas TN, Berger G, Frenette PS, Rayburn H, Hynes RO, et al. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J Cell Biol. 1998;143:1129–41. https://doi.org/10.1083/jcb.143.4.1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McEver RP. GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem. 1991;45:156–61. https://doi.org/10.1002/jcb.240450206.

    Article  CAS  PubMed  Google Scholar 

  22. Aruffo A, Kolanus W, Walz G, Fredman P, Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991;67:35–44. https://doi.org/10.1016/0092-8674(91)90570-o.

    Article  CAS  PubMed  Google Scholar 

  23. Assinger A, Buchberger E, Laky M, Esfandeyari A, Brostjan C, Volf I. Periodontopathogens induce soluble P-selectin release by endothelial cells and platelets. Thromb Res. 2011;127:e20-26. https://doi.org/10.1016/j.thromres.2010.10.023.

    Article  CAS  PubMed  Google Scholar 

  24. Arribas M, Cutler DF. Weibel–Palade body membrane proteins exhibit differential trafficking after exocytosis in endothelial cells. Traffic. 2000;1:783–93. https://doi.org/10.1034/j.1600-0854.2000.011005.x.

    Article  CAS  PubMed  Google Scholar 

  25. Wirtz PH, Hong S, Redwine LS, Tafur J, Rutledge T, Ziegler MG, et al. Depressive symptoms are associated with soluble P-selectin reactivity to acute exercise in heart failure. Biol Psychiatr. 2009;65:801–7. https://doi.org/10.1016/j.biopsych.2008.11.013.

    Article  CAS  Google Scholar 

  26. Dunlop LC, Skinner MP, Bendall LJ, Favaloro EJ, Castaldi PA, Gorman JJ, et al. Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J Exp Med. 1992;175:1147–50. https://doi.org/10.1084/jem.175.4.1147.

    Article  CAS  PubMed  Google Scholar 

  27. Panicker SR, Mehta-D’souza P, Zhang N, Klopocki AG, Shao B, McEver RP. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood. 2017;130:181–91. https://doi.org/10.1182/blood-2017-02-770479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faraday N, Scharpf RB, Dodd-o JM, Martinez EA, Rosenfeld BA, Dorman T. Leukocytes can enhance platelet-mediated aggregation and thromboxane release via interaction of P-selectin glycoprotein ligand 1 with P-selectin. Anesthesiology. 2001;94:145–51. https://doi.org/10.1097/00000542-200101000-00025.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X, Burfeind KG, Michaelis KA, Braun TP, Olson B, Pelz KR, et al. MyD88 signalling is critical in the development of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle. 2019;10:378–90. https://doi.org/10.1002/jcsm.12377.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burfeind KG, Zhu X, Norgard MA, Levasseur PR, Huisman C, Michaelis KA, et al. Microglia in the hypothalamus respond to tumor-derived factors and are protective against cachexia during pancreatic cancer. Glia. 2020;68:1479–94. https://doi.org/10.1002/glia.23796.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. J Cachexia Sarcopenia Muscle. 2021;12:1312–32. https://doi.org/10.1002/jcsm.12745.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 2019;10:2154. https://doi.org/10.1038/s41467-019-09775-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Evans WE, McLeod HL. Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49. https://doi.org/10.1056/NEJMra020526.

    Article  CAS  PubMed  Google Scholar 

  34. Burkhardt J, Blume M, Petit-Teixeira E, Hugo Teixeira V, Steiner A, Quente E, et al. Cellular adhesion gene SELP is associated with rheumatoid arthritis and displays differential allelic expression. PLoS ONE. 2014;9:e103872–e103872. https://doi.org/10.1371/journal.pone.0103872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrmann SM, Ricard S, Nicaud V, Mallet C, Evans A, Ruidavets JB, et al. The P-selectin gene is highly polymorphic: reduced frequency of the Pro715 allele carriers in patients with myocardial infarction. Hum Mol Genet. 1998;7:1277–84. https://doi.org/10.1093/hmg/7.8.1277.

    Article  CAS  PubMed  Google Scholar 

  36. Kaur R, Singh J, Kapoor R, Kaur M. Association of SELP polymorphisms with soluble P-selectin levels and vascular risk in patients with type 2 diabetes mellitus: a case-control study. Biochem Genet. 2019;57:73–97. https://doi.org/10.1007/s10528-018-9881-6.

    Article  CAS  PubMed  Google Scholar 

  37. Vlachadis N, Tsamadias V, Siori M, Vrachnis N, Economou E. Association of the PECAM-1 (Leu125Val) and P-selectin (Thr715Pro) gene polymorphisms with unexplained spontaneous miscarriages. Cureus. 2022;14:e21859. https://doi.org/10.7759/cureus.21859.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bugert P, Vosberg M, Entelmann M, Jahn J, Katus HA, Klüter H. Polymorphisms in the P-selectin (CD62P) and P-selectin glycoprotein ligand-1 (PSGL-1) genes and coronary heart disease. Clin Chem Lab Med. 2004;42:997–1004. https://doi.org/10.1515/cclm.2004.202.

    Article  CAS  Google Scholar 

  39. Tan BH, Fladvad T, Braun TP, Vigano A, Strasser F, Deans DA, et al. P-selectin genotype is associated with the development of cancer cachexia. EMBO Mol Med. 2012;4:462–71. https://doi.org/10.1002/emmm.201200231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Avan A, Avan A, Le Large TY, Mambrini A, Funel N, Maftouh M, et al. AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients. PLoS ONE. 2014;9:e108057. https://doi.org/10.1371/journal.pone.0108057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, et al. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. 2017;8:122–30. https://doi.org/10.1002/jcsm.12138.

    Article  PubMed  Google Scholar 

  42. Powrózek T, Mlak R, Brzozowska A, Mazurek M, Gołębiowski P, Małecka-Massalska T. Relationship between-2028 C/T SELP gene polymorphism, concentration of plasma P-selectin and risk of malnutrition in head and neck cancer patients. Pathol Oncol Res. 2019;25:741–9. https://doi.org/10.1007/s12253-018-00578-w.

    Article  CAS  PubMed  Google Scholar 

  43. Solheim TS, Fayers PM, Fladvad T, Tan B, Skorpen F, Fearon K, et al. Is there a genetic cause for cancer cachexia?—a clinical validation study in 1797 patients. Br J Cancer. 2011;105:1244–51. https://doi.org/10.1038/bjc.2011.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harrison P, Cramer EM. Platelet alpha-granules. Blood Rev. 1993;7:52–62. https://doi.org/10.1016/0268-960x(93)90024-x.

    Article  CAS  PubMed  Google Scholar 

  45. Hellen N, Mashanov GI, Conte IL, le Trionnaire S, Babich V, Knipe L, et al. P-selectin mobility undergoes a sol-gel transition as it diffuses from exocytosis sites into the cell membrane. Nat Commun. 2022;13:3031. https://doi.org/10.1038/s41467-022-30669-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23:177–89. https://doi.org/10.1016/j.blre.2009.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell. 1993;74:541–54. https://doi.org/10.1016/0092-8674(93)80055-j.

    Article  CAS  PubMed  Google Scholar 

  48. Opal SM, Sypek JP, Keith JC Jr, Schaub RG, Palardy JE, Parejo NA. Evaluation of the safety of recombinant P-selectin glycoprotein ligand-immunoglobulin G fusion protein in experimental models of localized and systemic infection. Shock. 2001;15:285–90. https://doi.org/10.1097/00024382-200115040-00006.

    Article  CAS  PubMed  Google Scholar 

  49. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89. https://doi.org/10.1038/nri2156.

    Article  CAS  PubMed  Google Scholar 

  50. Wang HB, Wang JT, Zhang L, Geng ZH, Xu WL, Xu T, et al. P-selectin primes leukocyte integrin activation during inflammation. Nat Immunol. 2007;8:882–92. https://doi.org/10.1038/ni1491.

    Article  CAS  PubMed  Google Scholar 

  51. Setiadi H, Yago T, Liu Z, McEver RP. Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv. 2019;3:168–83. https://doi.org/10.1182/bloodadvances.2018026294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23–67. https://doi.org/10.1152/physrev.00043.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cerquone Perpetuini A, Re Cecconi AD, Chiappa M, Martinelli GB, Fuoco C, Desiderio G, et al. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. J Cachexia Sarcopenia Muscle. 2018;9:727–46. https://doi.org/10.1002/jcsm.12303.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yuan L, Han J, Meng Q, Xi Q, Zhuang Q, Jiang Y, et al. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study. Oncol Rep. 2015;33:2261–8. https://doi.org/10.3892/or.2015.3845.

    Article  CAS  PubMed  Google Scholar 

  55. McLoughlin TJ, Smith SM, DeLong AD, Wang H, Unterman TG, Esser KA. FoxO1 induces apoptosis in skeletal myotubes in a DNA-binding-dependent manner. Am J Physiol Cell Physiol. 2009;297:C548-555. https://doi.org/10.1152/ajpcell.00502.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Porzionato A, Sfriso MM, Pontini A, Macchi V, Petrelli L, Pavan PG, et al. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery. Int J Mol Sci. 2015;16:14808–31. https://doi.org/10.3390/ijms160714808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hidari KI, Weyrich AS, Zimmerman GA, McEver RP. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750–6. https://doi.org/10.1074/jbc.272.45.28750.

    Article  CAS  PubMed  Google Scholar 

  58. Callaway CS, Delitto AE, Patel R, Nosacka RL, D’Lugos AC, Delitto D, et al. IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers Basel. 2019. https://doi.org/10.3390/cancers11121863.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Szefel J, Kruszewski WJ, Ciesielski M, Szajewski M, Kawecki K, Jankun J, et al. L-carnitine and cancer cachexia. II. Effects of lipid emulsion used in total parenteral nutrition on parameters of hemostasis and inflammatory state in L-carnitine deficiency in myocytes. Oncol Rep. 2012;28:324–9. https://doi.org/10.3892/or.2012.1805.

    Article  CAS  PubMed  Google Scholar 

  60. Reddel CJ, Allen JD, Ehteda A, Taylor R, Chen VM, Curnow JL, et al. Increased thrombin generation in a mouse model of cancer cachexia is partially interleukin-6 dependent. J Thromb Haemost. 2017;15:477–86. https://doi.org/10.1111/jth.13612.

    Article  CAS  PubMed  Google Scholar 

  61. Cai H, Pan B, Xu J, Liu S, Wang L, Wu K, et al. D-dimer is a diagnostic biomarker of abdominal aortic aneurysm in patients with peripheral artery disease. Front Cardiovasc Med. 2022;9:890228. https://doi.org/10.3389/fcvm.2022.890228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197:1585–98. https://doi.org/10.1084/jem.20021868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ivanov II, Apta BHR, Bonna AM, Harper MT. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 2019;9:13397. https://doi.org/10.1038/s41598-019-49635-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA. 1994;91:8767–71. https://doi.org/10.1073/pnas.91.19.8767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58:515–23. https://doi.org/10.4103/0019-5049.144643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Butenas S, Orfeo T, Mann KG. Tissue factor activity and function in blood coagulation. Thromb Res. 2008;122(Suppl 1):S42-46. https://doi.org/10.1016/s0049-3848(08)70018-5.

    Article  CAS  PubMed  Google Scholar 

  67. Hrachovinová I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med. 2003;9:1020–5. https://doi.org/10.1038/nm899.

    Article  CAS  PubMed  Google Scholar 

  68. Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108:1284–97. https://doi.org/10.1161/circresaha.110.233056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spronk HM, ten Cate H, van der Meijden PE. Differential roles of tissue factor and phosphatidylserine in activation of coagulation. Thromb Res. 2014;133(Suppl 1):S54-56. https://doi.org/10.1016/j.thromres.2014.03.022.

    Article  PubMed  Google Scholar 

  70. Neuenschwander PF, Bianco-Fisher E, Rezaie AR, Morrissey JH. Phosphatidylethanolamine augments factor VIIa-tissue factor activity: enhancement of sensitivity to phosphatidylserine. Biochemistry. 1995;34:13988–93. https://doi.org/10.1021/bi00043a004.

    Article  CAS  PubMed  Google Scholar 

  71. Argilés JM, Stemmler B, López-Soriano FJ, Busquets S. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol. 2018;15:9–20. https://doi.org/10.1038/s41574-018-0123-0.

    Article  PubMed  Google Scholar 

  72. Diaz JA, Wrobleski SK, Alvarado CM, Hawley AE, Doornbos NK, Lester PA, et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler Thromb Vasc Biol. 2015;35:829–37. https://doi.org/10.1161/atvbaha.114.304457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leucker TM, Osburn WO, Reventun P, Smith K, Claggett B, Kirwan BA, et al. Effect of Crizanlizumab, a P-Selectin inhibitor, in COVID-19: a placebo-controlled randomized trial. JACC Basic Transl Sci. 2021;6:935–45. https://doi.org/10.1016/j.jacbts.2021.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gutsaeva DR, Parkerson JB, Yerigenahally SD, Kurz JC, Schaub RG, Ikuta T, et al. Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood. 2011;117:727–35. https://doi.org/10.1182/blood-2010-05-285718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wong DJ, Park DD, Park SS, Haller CA, Chen J, Dai E, et al. A PSGL-1 glycomimetic reduces thrombus burden without affecting hemostasis. Blood. 2021;138:1182–93. https://doi.org/10.1182/blood.2020009428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Japp AG, Chelliah R, Tattersall L, Lang NN, Meng X, Weisel K, et al. Effect of PSI-697, a novel P-selectin inhibitor, on platelet-monocyte aggregate formation in humans. J Am Heart Assoc. 2013;2:e006007. https://doi.org/10.1161/jaha.112.006007.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376:429–39. https://doi.org/10.1056/NEJMoa1611770.

    Article  CAS  PubMed  Google Scholar 

  78. Blair HA. Crizanlizumab: first approval. Drugs. 2020;80:79–84. https://doi.org/10.1007/s40265-019-01254-2.

    Article  CAS  PubMed  Google Scholar 

  79. Krishnamurthy VR, Sardar MY, Ying Y, Song X, Haller C, Dai E, et al. Glycopeptide analogues of PSGL-1 inhibit P-selectin in vitro and in vivo. Nat Commun. 2015;6:6387. https://doi.org/10.1038/ncomms7387.

    Article  CAS  PubMed  Google Scholar 

  80. Huang A, Moretto A, Janz K, Lowe M, Bedard PW, Tam S, et al. Discovery of 2-[1-(4-chlorophenyl)cyclopropyl]-3-hydroxy-8-(trifluoromethyl)quinoline-4-carboxylic acid (PSI-421), a P-selectin inhibitor with improved pharmacokinetic properties and oral efficacy in models of vascular injury. J Med Chem. 2010;53:6003–17. https://doi.org/10.1021/jm9013696.

    Article  CAS  PubMed  Google Scholar 

  81. Feng Q, Wang M, Muhtar E, Wang Y, Zhu H. Nanoparticles of a new small-molecule P-Selectin inhibitor attenuate thrombosis, inflammation, and tumor growth in two animal models. Int J Nanomedicine. 2021;16:5777–95. https://doi.org/10.2147/ijn.S316863.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qi C, Li B, Guo S, Wei B, Shao C, Li J, et al. P-Selectin-mediated adhesion between platelets and tumor cells promotes intestinal tumorigenesis in Apc(Min/+) mice. Int J Biol Sci. 2015;11:679–87. https://doi.org/10.7150/ijbs.11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qi CL, Wei B, Ye J, Yang Y, Li B, Zhang QQ, et al. P-selectin-mediated platelet adhesion promotes the metastasis of murine melanoma cells. PLoS ONE. 2014;9:e91320. https://doi.org/10.1371/journal.pone.0091320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the grants from National Nature Science Foundation of China (82171318 and 82241030), Shandong Taishan Scholarship (JuL), Academic Promotion Program of Shandong First Medical University (2019QL014), and Jinan City's Science and Technology Innovation Program of Clinical Medicine (202019175).

Funding

This study was supported by grants from National Nature Science Foundation of China (82171318 and 82241030), Shandong Taishan Scholarship (JuL), Academic Promotion Program of Shandong First Medical University (2019QL014) and Jinan City's Science and Technology Innovation Program of Clinical Medicine (202019175).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article. This review was conceived and designed by LJ. The first draft of the manuscript was written by TL. LJ, JL and LD critically revised the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ju Liu.

Ethics declarations

Competing interests

All authors declare that they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, T., Liu, J., Dong, L. et al. The roles of P-selectin in cancer cachexia. Med Oncol 40, 338 (2023). https://doi.org/10.1007/s12032-023-02207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02207-2

Keywords

Navigation