Skip to main content

Advertisement

Log in

Control of Ph+ and additional chromosomal abnormalities in chronic myeloid leukemia by tyrosine kinase inhibitors

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a type of blood cancer that is known to affect hematopoietic stem cells. The presence of the Philadelphia chromosome (Ph+) is the major characteristic of CML. A protein expressed by the Philadelphia chromosome shows elevated tyrosine kinase activity and is considered a tumorigenic factor. The first line of therapy that had been established for CML was “imatinib,” a potent tyrosine kinase inhibitor. Various other second- and third-generation TKIs are taken into account in cases of imatinib failure/resistance. With the subsequent rise in the development of tyrosine kinase inhibitors, optimization in the treatment of CML and amplified total survival were observed throughout TKI dosage. As the disease progresses, additional chromosomal abnormalities (ACAs) have been reported, but their prognostic effect and impact on the response to treatment are still unknown. However, some substantial understandings have been achieved into the disease transformation mechanisms, including the role of somatic mutations, ACAs, and several different genomic mutations that occur during diagnosis or have evolved during treatment. The acquisition of ACAs impedes CML treatment. Due to additional chromosomal lesions, there are greater chances of future disease progression at the time of CML diagnosis beyond the Ph+ translocation. The synchronous appearance of two or more ACAs leads to lower survival and is classified as a poor prognostic group. The key objective of this review is to provide detailed insights into TKIs and their role in controlling Ph+ and ACAs, along with their response, treatment, overall persistence, and survival rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Benchikh S, Bousfiha A, El Hamouchi A, Soro SGC, Malki A, Nassereddine S. Chronic myeloid leukemia: cytogenetics and molecular biology’s part in the comprehension and management of the pathology and treatment evolution. Egypt J Med Hum Genet. 2022;23:29. https://doi.org/10.1186/s43042-022-00248-2.

    Article  Google Scholar 

  2. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–9. https://doi.org/10.1016/0092-8674(84)90077-1.

    Article  CAS  PubMed  Google Scholar 

  3. Gambacorti-Passerini C, Antolini L, Mahon FX, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103:553–61. https://doi.org/10.1093/jnci/djr060.

    Article  CAS  PubMed  Google Scholar 

  4. Caldemeyer L, Dugan M, Edwards J, et al. Long-term side effects of tyrosine kinase inhibitors in chronic myeloid leukemia. Curr Hematol Malig Rep. 2016;11:71–9. https://doi.org/10.1007/s11899-016-0309-2.

    Article  PubMed  Google Scholar 

  5. Bartram CR, de Klein A, Hagemeijer A, et al. Translocation of c-abl1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306:277–80. https://doi.org/10.1038/306277a0.

    Article  CAS  PubMed  Google Scholar 

  6. Hantschel O. Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer. 2012;3:436–46. https://doi.org/10.1177/1947601912458584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. The WJYJ, Capable ABL. What is its biological function? Mol Cell Biol. 2014;34:1188–97. https://doi.org/10.1128/MCB.01454-13.

    Article  CAS  Google Scholar 

  8. Bixby D, Talpaz M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am Soc Hematol Educ Program. 2009;461:76. https://doi.org/10.1182/asheducation-2009.1.46.

    Article  Google Scholar 

  9. Senapati J, Sasaki K. Chromosomal instability in chronic myeloid leukemia: mechanistic insights and effects. Cancers (Basel). 2022;14(10):2533.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hartley SE, McBeath S. Cytogenetic follow-up in chronic myeloid leukemia. Cancer Genet Cytogenet. 1981;3:37–46. https://doi.org/10.1016/0165-4608(81)90054-6.

    Article  CAS  PubMed  Google Scholar 

  11. Cervantes F, Ballesta F, Mila M, Rozman C. Cytogenetic studies in blast crisis of Ph-positive chronic granulocytic leukemia: results and prognostic evaluation in 52 patients. Cancer Genet Cytogenet. 1986;21:239–46. https://doi.org/10.1016/0165-4608(86)90004-x.

    Article  CAS  PubMed  Google Scholar 

  12. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002;107:76–94. https://doi.org/10.1159/000046636.

    Article  CAS  PubMed  Google Scholar 

  13. Clark RE, Apperley JF, Copland M, Cicconi S. Additional chromosomal abnormalities at chronic myeloid leukemia diagnosis predict an increased risk of progression. Blood Adv. 2021;5:1102–9. https://doi.org/10.1182/bloodadvances.2020003570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu J, Zhou Y, Yuan Q, Xiao M. Myeloid blast crisis of chronic myeloid leukemia followed by lineage switch to B-lymphoblastic leukemia: a case report. Onco Targets Ther. 2020;13:3259–64. https://doi.org/10.2147/OTT.S251214.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bavaro L, Martelli M, Cavo M, Soverini S. Mechanisms of disease progression and resistance to tyrosine kinase inhibitor therapy in chronic myeloid leukemia: an update. Int J Mol Sci. 2019;20(24):6141. https://doi.org/10.3390/ijms20246141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. National Cancer Institute (NCI). National Institutes of Health (NIH). Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version. 2022. https://www.cancer.gov/types/leukemia/patient/cml-treatment-pdq

  17. Krishna Chandran R, Geetha N, Sakthivel KM, Suresh Kumar R, Jagathnath Krishna KMN, Sreedharan H. Impact of additional chromosomal aberrations on the disease progression of chronic myelogenous leukemia. Front Oncol. 2019;9:88. https://doi.org/10.3389/fonc.2019.00088.

    Article  PubMed Central  PubMed  Google Scholar 

  18. O’Dwyer ME, Mauro MJ, Blasdel C, et al. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood. 2004;103(2):451–5. https://doi.org/10.1182/blood-2003-02-0371.

    Article  CAS  PubMed  Google Scholar 

  19. Bacher U, Haferlach T, Hiddemann W, Schnittger S, Kern W, Schoch C. Additional clonal abnormalities in Philadelphia-positive ALL and CML demonstrate a different cytogenetic pattern at diagnosis and follow different pathways at progression. Cancer Genet Cytogen. 2005;157:53–61. https://doi.org/10.1016/j.cancergencyto.2004.06.011.

    Article  CAS  Google Scholar 

  20. Brazma D, Grace C, Howard J, Melo JV, Holyoke T, Apperley JF, et al. Genomic profile of chronic myelogenous leukemia: imbalances associated with disease progression. Gene Chromosome Cancer. 2007;46:1039–50. https://doi.org/10.1002/gcc.20487.

    Article  CAS  Google Scholar 

  21. Khorashad JS, De Melo VA, Fiegler H, Gerrard G, Marin D, Apperley JF, et al. Multiple sub-microscopic genomic lesions are a universal feature of chronic myeloid leukaemia at diagnosis. Leukemia. 2008;22:1806–7. https://doi.org/10.1038/leu.2008.210.

    Article  CAS  PubMed  Google Scholar 

  22. Watmore AE, Potter AM, Sokol RJ, Wood JK. Value of cytogenetic studies in prediction of acute phase CML. Cancer Genet Cytogenet. 1985;14(3–4):293–301. https://doi.org/10.1016/0165-4608(85)90195-5.

    Article  CAS  PubMed  Google Scholar 

  23. Swolin B, Weinfeld A, Westin J, Waldenstrom J, Magnusson B. Karyotypic evolution in Ph-positive chronic myeloid leukemia in relation to management ¨ and disease progression. Cancer Genet Cytogenet. 1985;18(1):65–79. https://doi.org/10.1016/0165-4608(85)90041-x.

    Article  CAS  PubMed  Google Scholar 

  24. Sokal JE, Gomez GA, Baccarani M, et al. Prognostic significance of additional cytogenetic abnormalities at diagnosis of Philadelphia chromosome-positive chronic granulocytic leukemia. Blood. 1988;72(1):294–8.

    Article  CAS  PubMed  Google Scholar 

  25. Cortes JE, Talpaz M, Giles F, et al. (2003) Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101(10):3794–800. https://doi.org/10.1182/blood-2002-09-2790.

    Article  CAS  PubMed  Google Scholar 

  26. Gong Z, Medeiros LJ, Cortes JE, et al. Cytogenetics-based risk prediction of blastic transformation of chronic myeloid leukemia in the era of TKI therapy. Blood Adv. 2017;1(26):2541–52. https://doi.org/10.1182/bloodadvances.2017011858.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fabarius A, Leitner A, Hochhaus A, et al. Schweizerische Arbeitsgemeinschaft fur Klinische Krebsforschung (SAKK) and the German CML Study Group. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood. 2011;118(26):6760–8. https://doi.org/10.1182/blood-2011-08-373902.

    Article  CAS  PubMed  Google Scholar 

  28. Fabarius A, Kalmanti L, Dietz CT, SAKK and the German CML Study Group, et al. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol. 2015;94(12):2015–24. https://doi.org/10.1007/s00277-015-2494-9.

    Article  PubMed  Google Scholar 

  29. Alhuraiji A, Kantarjian H, Boddu P, et al. Prognostic significance of additional chromosomal abnormalities at the time of diagnosis in patients with chronic myeloid leukemia treated with frontline tyrosine kinase inhibitors. Am J Hematol. 2018;93(1):84–90. https://doi.org/10.1002/ajh.24943.

    Article  CAS  PubMed  Google Scholar 

  30. Verma D, Kantarjian H, Shan J, et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer. 2010;116(11):2673–81. https://doi.org/10.1002/cncr.25015.

    Article  CAS  PubMed  Google Scholar 

  31. Hehlmann R, Voskanyan A, Lauseker M, et al. High-risk additional chromosomal abnormalities at low blast counts herald death by CML. Leukemia. 2020;34:2074–86. https://doi.org/10.1038/s41375-020-0826-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hochhaus A, Baccarani M, Silver RT, et al. European Leukemia Net 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. https://doi.org/10.1038/s41375-020-0776-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Radich JP, Deininger M, Abboud CN, et al. Chronic myeloid leukemia, version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2018;16(9):1108–35. https://doi.org/10.6004/jnccn.2018.0071.

    Article  Google Scholar 

  34. Safaei A, Monabati A, Safavi M, Atashabparvar A, Hosseini M. Additional cytogenetic aberrations in chronic myeloid leukemia: a single-center experience in the Middle East. Blood Res. 2018;53(1):49–52. https://doi.org/10.5045/br.2018.53.1.49.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tashfeen S, Mahmood R, Khan SA, Khadim T. Additional chromosomal abnormalities in Philadelphia positive chronic myeloid leukemia. Pak J Med Sci. 2020;36(2):208–12. https://doi.org/10.12669/pjms.36.2.1384.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang W, Cortes JE, Tang G, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127(22):2742–50. https://doi.org/10.1182/blood-2016-01-690230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Morita K, Sasaki K. Current status and novel strategy of CML. Int J Hematol. 2021;113(5):624–31. https://doi.org/10.1007/s12185-021-03127-5.

    Article  CAS  PubMed  Google Scholar 

  38. Morita K, Jabbour E, Ravandi F, Borthakur G, Khoury JD, Hu S, Garcia-Manero G, Wierda W, Issa G, Daver N, et al. Clinical outcomes of patients with chronic myeloid leukemia with concurrent core binding factor rearrangement and philadelphia chromosome. Clin Lymphoma Myeloma Leuk. 2021;21:338–44. https://doi.org/10.1016/j.clml.2020.12.025.

    Article  CAS  PubMed  Google Scholar 

  39. Issa GC, Kantarjian HM, Gonzalez GN, Borthakur G, Tang G, Wierda W, Sasaki K, Short N, Ravandi F, Kadia T, et al. Clonal chromosomal abnormalities appearing in Philadelphia chromosome-negative metaphases during CML treatment. Blood. 2017;130:2084–91. https://doi.org/10.1182/blood-2017-07-792143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Morita K, Kantarjian HM, Sasaki K, Issa GC, Jain N, Konopleva M, Short NJ, Takahashi K, DiNardo CD, Kadia TM, et al. Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome positive acute lymphoblastic leukemia treated with hyper-CVAD and dasatinib. Cancer. 2021;127:2641–7. https://doi.org/10.1002/cncr.33539.

    Article  CAS  PubMed  Google Scholar 

  41. Jain P, Kantarjian HM, Ghorab A, Sasaki K, Jabbour EJ, Nogueras Gonzalez G, Kanagal Shamanna R, Issa GC, Garcia-Manero G, Kc D, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer. 2017;123:4391–402. https://doi.org/10.1002/cncr.30864.

    Article  CAS  PubMed  Google Scholar 

  42. Jain P, Kantarjian H, Sasaki K, Jabbour E, Dasarathula J, Nogueras Gonzalez G, Verstovsek S, Borthakur G, Wierda W, Kadia T, et al. Analysis of 2013 European LeukaemiaNet (ELN) responses in chronic phase CML across four frontline TKI modalities and impact on clinical outcomes. Br J Haematol. 2016;173:114–26. https://doi.org/10.1111/bjh.13936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Jain P, Kantarjian H, Patel KP, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10):1269–75. https://doi.org/10.1182/blood-2015-10-674242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dierov J, Sanchez PV, Burke BA, et al. BCR/ABL induces chromosomal instability after genotoxic stress and alters the cell death threshold. Leukemia. 2009;23(2):279–86. https://doi.org/10.1038/leu.2008.308.

    Article  CAS  PubMed  Google Scholar 

  45. Nieborowska-Skorska M, Kopinski PK, Ray R, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood. 2012;119(18):4253–63. https://doi.org/10.1182/blood-2011-10-385658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Popp HD, Kohl V, Naumann N, et al. DNA damage and DNA damage response in chronic myeloid leukemia. Int J Mol Sci. 2020;21(4):1177. https://doi.org/10.3390/ijms21041177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bolton-Gillespie E, Schemionek M, Klein HU, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121(20):4175–83. https://doi.org/10.1182/blood-2012-11-466938.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254–64. https://doi.org/10.1172/JCI41246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Schoch C, Haferlach T, Kern W, et al. Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia. 2003;17(2):461–3. https://doi.org/10.1038/sj.leu.2402813.

    Article  CAS  PubMed  Google Scholar 

  50. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. https://doi.org/10.1038/s41375-020-0776-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  52. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):1595–606. https://doi.org/10.1182/blood-2016-09-696013.

    Article  CAS  PubMed  Google Scholar 

  53. Soverini S, De Santis S, Monaldi C, Bruno S, Mancini M. Targeting leukemic stem cells in chronic myeloid leukemia: is it worth the effort? Int J Mol Sci. 2021;22(13):7093. https://doi.org/10.3390/ijms22137093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Fabarius A, Leitner A, Hochhaus A, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood. 2011;118(26):6760–8. https://doi.org/10.1182/blood-2011-08-373902.

    Article  CAS  PubMed  Google Scholar 

  55. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. https://doi.org/10.1182/blood-2013-05-501569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Oehler VG. First-generation vs second-generation tyrosine kinase inhibitors: which is best at diagnosis of chronic phase chronic myeloid leukemia? Hematol Am Soc Hematol Educ Program. 2020;2020(1):228–36. https://doi.org/10.1182/hematology.2020000108.

    Article  Google Scholar 

  57. Kim TD, Türkmen S, Schwarz M, Koca G, Nogai H, Bommer C, Dörken B, Daniel P, le Coutre P. Impact of additional chromosomal aberrations and BCR-ABL kinase domain mutations on the response to nilotinib in Philadelphia chromosomepositive chronic myeloid leukemia. Haematologica. 2010;95:582–8. https://doi.org/10.3324/haematol.2009.014712.

    Article  CAS  PubMed  Google Scholar 

  58. Sasaki K. Chronic myeloid leukemia: update on treatment and survival prediction. [Rinsho Ketsueki]. Jpn J Clin Hematol. 2020;61(9):1179–86. https://doi.org/10.11406/rinketsu.61.1179.

    Article  Google Scholar 

  59. Amare PSK, Jain H, Kabre S, Walke D, Menon H, Sengar M, Khatri N, Bagal B, Dangi U, Subramanian PG, et al. Characterization of genomic events other than Ph and evaluation of prognostic influence on imatinib in chronic myeloid leukemia (CML): a study on 1449 patients from India. J Cancer Ther. 2016;7:285–96.

    Article  CAS  Google Scholar 

  60. Chen Z, Cortes JE, Jorgensen JL, et al. Differential impact of additional chromosomal abnormalities in myeloid vs lymphoid blast phase of chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia. 2016;30(7):1606–9. https://doi.org/10.1038/leu.2016.6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Senapati J, Jabbour E, Kantarjian H, Short NJ. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia. 2023;37(1):5–17. https://doi.org/10.1038/s41375-022-01736-5.

    Article  PubMed  Google Scholar 

  62. Rajabto W, Joenputri N. Additional chromosomal abnormalities in chronic myeloid leukemia patient treated with first-line tyrosine kinase inhibitor therapy: good or poor prognosis? Acta Med Indones. 2022;54(4):603–6.

    PubMed  Google Scholar 

  63. Shah J. The importance of hematologic, cytogenetic, and molecular testing and mutational analysis in chronic myeloid leukemia. J Commun Support Oncol. 2014;12(5):179–87. https://doi.org/10.12788/jcso.0043.

    Article  Google Scholar 

  64. Ankathil R, Ismail SM, Mohd Yunus N, Sulong S, Husin A, Abdullah AD, et al. Clinical implications of conventional cytogenetics, fuorescence in situ hybridization (FISH) and molecular testing in chronic myeloid leukaemia patients in the tyrosine kinase inhibitor era—a review. Malays J Pathol. 2020;42(3):307–21.

    CAS  PubMed  Google Scholar 

  65. Dorfman LE, Floriani MA, Oliveira TMR, Cunegatto B, Rosa RFM, Zen PRG. The role of cytogenetics and molecular biology in the diagnosis, treatment and monitoring of patients with chronic myeloid leukemia. J Bras Patol E Med Lab. 2018;54(2):83–91. https://doi.org/10.5935/1676-2444.20180015.

    Article  CAS  Google Scholar 

  66. Benchikh S, Bousfha A, Razoki L, Aboulfaraj J, Zarouf L, Elbakay C, et al. Chromosome abnormalities related to reproductive and sexual development disorders: a 5-year retrospective study. BioMed Res Int. 2021;5:1–11. https://doi.org/10.1155/2021/8893467.

    Article  Google Scholar 

  67. Fröhling S, Döhner H. Chromosomal abnormalities in cancer. N Engl J Med. 2008;359(7):722–34. https://doi.org/10.1056/NEJMra0803109.

    Article  PubMed  Google Scholar 

  68. Hagemeijer A. Chromosome abnormalities in CML. Baillières Clin Haematol. 1987;1(4):963–81. https://doi.org/10.1016/s0950-3536(87)80034-3.

    Article  CAS  PubMed  Google Scholar 

  69. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(14):2833–8. https://doi.org/10.1242/jcs.00633.

    Article  CAS  PubMed  Google Scholar 

  70. Wolff DJ, Bagg A, Cooley LD, Dewald GW, Hirsch BA, Jacky PB, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43. https://doi.org/10.2353/jmoldx.2007.060128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Roche-Lestienne C, Boudry-Labis E, Mozziconacci M-J. Cytogenetics in the management of “chronic myeloid leukemia”: an update by the Groupe francophone de cytogénétique hématologique (GFCH). Ann Biol Clin (Paris). 2016;74(5):511–5. https://doi.org/10.1684/abc.2016.1151.

    Article  CAS  PubMed  Google Scholar 

  72. Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30(8):1648–71. https://doi.org/10.1038/leu.2016.104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Deininger MW, Shah NP, Altman JK, Berman E, Bhatia R, Bhatnagar B, et al. Chronic myeloid leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2020;18(10):1385–415. https://doi.org/10.6004/jnccn.2020.0047.

    Article  CAS  Google Scholar 

  74. Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, Talpaz M, Tura S. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood. 1999;94(5):1517–36.

    CAS  PubMed  Google Scholar 

  75. Lee SJ. Chronic myelogenous leukaemia. Br J Haematol. 2000;111(4):993–1009. https://doi.org/10.1046/j.1365-2141.2000.02216.x.

    Article  CAS  PubMed  Google Scholar 

  76. Henkes M, van der Kuip H, Aulitzky WE. Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec, Gleevectrade mark). Ther Clin Risk Manag. 2008;4(1):163–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Löffler H, Heinze B, Georgii A. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood. 1993;82(2):398–407.

    Article  CAS  PubMed  Google Scholar 

  78. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists' Collaborative Group. J Natl Cancer Inst. 1997;89(21):1616–1620.

  79. Fausel C. Targeted chronic myeloid leukemia therapy: seeking a cure. J Manag Care Spec Pharm. 2007;13(8 Suppl A):8–12. https://doi.org/10.18553/jmcp.2007.13.s8-a.8.

    Article  Google Scholar 

  80. Talpaz M, Kantarjian HM, McCredie K, Trujillo JM, Keating MJ, Gutterman JU. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med. 1986;314:1065–9.

    Article  CAS  PubMed  Google Scholar 

  81. Woessner DW, Lim CS, Deininger MW. Development of an effective therapy for chronic myelogenous leukemia. Cancer J (Sudbury, Mass). 2011;17(6):477–86. https://doi.org/10.1097/PPO.0b013e318237e5b7.

    Article  CAS  Google Scholar 

  82. Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann hematol. 2015;94(Suppl 2):195-S207. https://doi.org/10.1007/s00277-015-2326-y.

    Article  CAS  Google Scholar 

  83. Talpaz M, Hehlmann R, Quintás-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-α in the treatment of chronic myeloid leukemia. Leukemia. 2013;27(4):803–12. https://doi.org/10.1038/leu.2012.313.

    Article  CAS  PubMed  Google Scholar 

  84. Malagola M, Breccia M, Skert C, Cancelli V, Soverini S, Iacobucci I, Cattina F, Liberati AM, Tiribelli M, Annunziata M, Trabacchi E, De Vivo A, Castagnetti F, Martinelli G, Fogli M, Stagno F, Pica G, Iurlo A, Pregno P, Abruzzese E, Russo D. Long term outcome of Ph+ CML patients achieving complete cytogenetic remission with interferon based therapy moving from interferon to imatinib era. Am J Hematol. 2014;89(2):119–24. https://doi.org/10.1002/ajh.23593.

    Article  CAS  PubMed  Google Scholar 

  85. Branford S. Why is it critical to achieve a deep molecular response in chronic myeloid leukemia? Haematologica. 2020;105(12):2730–7. https://doi.org/10.3324/haematol.2019.240739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Singh AK, McGuirk JP. Allogeneic stem cell transplantation: a historical and scientific overview science behind allogeneic transplant. Cancer Res. 2016;76(22):6445–51. https://doi.org/10.1158/0008-5472.CAN-16-1311.

    Article  CAS  PubMed  Google Scholar 

  87. Goldman JM, Apperley JF, Jones L, Marcus R, Goolden AW, Batchelor R, Galton DA. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med. 1986;314(4):202–7. https://doi.org/10.1056/NEJM198601233140403.

    Article  CAS  PubMed  Google Scholar 

  88. Boranić M, Tonković I. Time pattern of the antileukemic effect of graft-versus-host reaction in mice. Cancer Res. 1971;31(8):1140–7.

    PubMed  Google Scholar 

  89. Or R, Shapira MY, Resnick I, Amar A, Ackerstein A, Samuel S, Slavin S. Nonmyeloablative allogeneic stem cell transplantation for the treatment of chronic myeloid leukemia in first chronic phase. Blood. 2003;101(2):441–5. https://doi.org/10.1182/blood-2002-02-0535.

    Article  CAS  PubMed  Google Scholar 

  90. Weiden PL. Antileukemic effect of graft-versus-host disease contributes to improved survival after allogeneic marrow transplantation. Transpl Proc. 1981;13:248–51.

    CAS  Google Scholar 

  91. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED, Seattle Marrow Transplant Team. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304(25):1529–33. https://doi.org/10.1056/NEJM198106183042507.

    Article  CAS  PubMed  Google Scholar 

  92. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Speck B. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    Article  CAS  PubMed  Google Scholar 

  93. Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, Or R. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood. 1996;87(6):2195–204.

    Article  CAS  PubMed  Google Scholar 

  94. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Niederwieser D. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50.

    Article  CAS  PubMed  Google Scholar 

  95. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, Nemunaitis J. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15(2):433–44. https://doi.org/10.1200/JCO.1997.15.2.433.

    Article  PubMed  Google Scholar 

  96. Or R, Mehta J, Naparstek E, Okon E, Cividalli G, Slavin S. Successful T cell-depleted allogeneic bone marrow transplantation in a child with recurrent multiple extramedullary plasmacytomas. Bone Marrow Transpl. 1992;10(4):381–2.

    CAS  Google Scholar 

  97. Vener C, Banzi R, Ambrogi F, et al. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: a systematic review and meta-analysis. Blood Adv. 2020;4(12):2723–35. https://doi.org/10.1182/bloodadvances.2019001329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Druker B, Guilhot F, O’Brien S, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17. https://doi.org/10.1056/NEJMoa062867.

    Article  CAS  PubMed  Google Scholar 

  99. Kantarjian H, O’Brien S, Cortes J, et al. Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer. 2003;97:1033–41. https://doi.org/10.1002/cncr.11223.

    Article  CAS  PubMed  Google Scholar 

  100. Kantarjian H, Cortes J. Considerations in the management of patients with Philadelphia chromosome-positive chronic myeloid leukemia receiving tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29(12):1512–6. https://doi.org/10.1200/JCO.2010.33.9176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. O’Brien SG, Guilhot F, Larson R, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004. https://doi.org/10.1056/NEJMoa022457.

    Article  PubMed  Google Scholar 

  102. Kantarjian H, Talpaz M, O’Brien S, et al. Survival benefit with imatinib mesylate versus interferon-based regimens in newly diagnosed chronic-phase chronic myelogenous leukemia. Blood. 2006;108:1835–40. https://doi.org/10.1182/blood-2006-02-004325.

    Article  CAS  PubMed  Google Scholar 

  103. O’Brien SG, Guilhot F, Goodman JM, et al. International randomized study of interferon versus STI571 (IRIS) 7-year follow-up: Sustained survival, low rate of transformation and increased rate of major molecular response (MMR) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib (IM). Blood. 2008;112(11):76. https://doi.org/10.1182/blood.V112.11.186.186.

    Article  Google Scholar 

  104. Tibes R, Mesa RA. Evolution of clinical trial endpoints in chronic myeloid leukemia: efficacious therapies require sensitive monitoring techniques. Leuk Res. 2012;36(6):664–71. https://doi.org/10.1016/j.leukres.2012.02.027.

    Article  PubMed  Google Scholar 

  105. Food and Drug Administration. Guidance for industry clinical trial endpoints for the approval of cancer drugs and biologics. 2007. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071590.pdf

  106. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58. https://doi.org/10.1186/s12943-018-0782-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Farkas DH, Holland CA. Overview of molecular diagnostic techniques and instrumentation. Cell and tissue based molecular pathology. Amsterdam: Elsevier; 2009. p. 19–32. https://doi.org/10.1016/B978-044306901-7.50008-0.

    Book  Google Scholar 

  108. Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci. 2005;109(4):365–79. https://doi.org/10.1042/CS20050086.

    Article  CAS  Google Scholar 

  109. Mir R, Ahmad I, Javid J, Zuberi M, Yadav P, Shazia R, Saxena A. Simple multiplex RT-PCR for identifying common fusion BCR-ABL transcript types and evaluation of molecular response of the a2b2 and a2b3 transcripts to Imatinib resistance in north Indian chronic myeloid leukemia patients. Indian J Cancer. 2015;52(3):314–8. https://doi.org/10.4103/0019-509X.176741.

    Article  PubMed  Google Scholar 

  110. Ganguly BB, Mandal S, Banerjee D, Kadam NN. Effects of tyrosine kinase inhibitors for controlling Ph+ clone and additional clonal abnormalities in a chronic myeloid leukemia. J Cancer Res Ther. 2022;18(3):760–4. https://doi.org/10.4103/jcrt.JCRT_1755_20.

    Article  CAS  PubMed  Google Scholar 

  111. Jacob LA, Bapsy PP, Govindbabu K, Lokanatha D. Imatinib mesylate in newly diagnosed patients of chronic myeloid leukemia chronic phase: a comparative study. J Clin Oncol. 2007;25:17521. https://doi.org/10.1200/jco.2007.25.18_suppl.17521.

    Article  Google Scholar 

  112. Brahmbhatt MM, Trivedi PJ, Patel DM, Shukla SN, Patel PS. Multiple copies of BCR/ABL fusion signals and t(3;21) in a chronic myeloid leukemia: patient with blast crisis-a rare event with imatinib mesylate (gleevec)-resistance in an Indian patient. J Assoc Genet Technol. 2014;40(1):4–9.

    PubMed  Google Scholar 

  113. Deluche L, Joha S, Corm S, Daudignon A, Geffroy S, Quief S, Roche-Lestienne C. Cryptic and partial deletions of PRDM16 and RUNX1 without t (1; 21)(p36; q22) and/or RUNX1–PRDM16 fusion in a case of progressive chronic myeloid leukemia: a complex chromosomal rearrangement of underestimated frequency in disease progression? Genes Chromosom Cancer. 2008;47(12):1110–7. https://doi.org/10.1002/gcc.20611.

    Article  CAS  PubMed  Google Scholar 

  114. Müller MC, Cortes JE, Kim DW, Druker BJ, Erben P, Pasquini R, Branford S, Hughes TP, Radich JP, Ploughman L, Mukhopadhyay J, Hochhaus A. Dasatinib treatment of chronic-phase chronic myeloid leukemia: analysis of responses according to preexisting BCR-ABL mutations. Blood. 2009;114(24):4944–53. https://doi.org/10.1182/blood-2009-04-214221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–29.

    Article  CAS  PubMed  Google Scholar 

  116. Bitencourt R, Zalcberg I, Louro ID. Imatinib resistance: a review of alternative inhibitors in chronic myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33:470–5. https://doi.org/10.5581/1516-8484.20110124.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Tanaka R, Kimura S, Ashihara E, Yoshimura M, Takahashi N, Wakita H, Maekawa T. Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients. Cancer Lett. 2011;312(2):228–34. https://doi.org/10.1016/j.canlet.2011.08.009.

    Article  CAS  PubMed  Google Scholar 

  118. Li S. Src-family kinases in the development and therapy of Philadelphia chromosome-positive chronic myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49(1):19–26. https://doi.org/10.1080/10428190701713689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Paquette RL, Shah NP, Sawyers CL, et al. PHA-739358, an aurora kinase inhibitor, induces clinical responses in chronic myeloid leukemia harboring T315I mutations of BCR-ABL. Blood. 2007;110(11):1030. https://doi.org/10.1182/blood.V110.11.1030.1030.

    Article  Google Scholar 

  120. Eide CA, Adrian LT, Tyner JW, et al. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile. Cancer Res. 2011;71(9):3189–95. https://doi.org/10.1158/0008-5472.CAN-10-3224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Shen Y, Shi X, Pan J. The conformational control inhibitor of tyrosine kinases DCC-2036 is effective for imatinib-resistant cells expressing T674I FIP1L1-PDGFRalpha. PLoS ONE. 2013;8(8):e73059. https://doi.org/10.1371/journal.pone.0073059.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Wylie A, Schoepfer J, Berellini G, Cai H, Caravatti G, Cotesta S, Sellers WR. ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood. 2014;124(21):398. https://doi.org/10.1182/blood.V124.21.398.398.

    Article  Google Scholar 

  123. Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J (Sudbury, Mass). 2016;22:40–50. https://doi.org/10.1097/PPO.0000000000000165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MV acknowledges the support he received from the Banaras Hindu University, Varanasi, under the IOE incentive grant in writing this manuscript. SA is grateful to BHU for the award of the UGC Non-NET fellowship.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

MV conceived and designed this review. SA collected the data and prepared the first draft of the manuscript. Further, the manuscript was improved iteratively by MV and SA. Authors have read and approved the final manuscript.

Corresponding author

Correspondence to Malkhey Verma.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

This review article does not need ethical approval.

Informed consent

Formal consent is not required for this type of study.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S., Verma, M. Control of Ph+ and additional chromosomal abnormalities in chronic myeloid leukemia by tyrosine kinase inhibitors. Med Oncol 40, 237 (2023). https://doi.org/10.1007/s12032-023-02116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02116-4

Keywords

Navigation