Skip to main content

Advertisement

Log in

The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Combined chemotherapy is recommended strategy as a first-line treatment method in patients with cervical cancer. Ganetespib (STA-9090) is a second-generation heat shock protein 90 (Hsp90) inhibitor that blocks the ATPase function of Hsp90 and inhibits the proper folding of oncogenic client proteins. Venetoclax (ABT-199) is an orally bioavailable Bcl-2 (B-cell lymphoma 2) inhibitor that stimulates apoptotic signaling pathways in cancer cells. This study evaluated the anticancer effects of STA-9090 combined with Venetoclax in the human cervical cancer cell line (HeLa). The human cervical cancer cells were treated with STA-9090, Venetoclax, and Sta-9090 plus Venetoclax for 48 h, and cell viability was measured using the XTT assay. The alteration of the Hsp90 protein expression level and the chaperone activity of HSP90 were detected by ELISA and luciferase aggregation assay, respectively. For the apoptotic process, qRT-PCR was applied to study Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Bcl-2-like protein 1 (Bcl-xL ), Cytochrome c (Cyt-c), Caspase3 (Cas-3), and Caspase7 (Cas-7) expression levels after drug treatments. Also, a colorimetric Cas-3 activity assay was performed to detect the induction of the apoptosis process. Our results demonstrated that 8 nM of STA-9090 combined with 4 µM of Venetoclax synergistically inhibited cervical cancer cell proliferation more than STA-9090 or Venetoclax alone after 48 h of treatment. STA-9090 and Venetoclax combination decreased the protein expression level of Hsp90 and significantly inhibited chaperone activity of Hsp90. This combination stimulated apoptosis in cervical cancer cells by down-regulating of anti-apoptotic markers while inducing pro-apoptotic markers. Also, the STA-9090-Venetoclax combination increased Cas-3 activity in Hela cells. Collectively, these findings pointed out that the STA-9090-Venetoclax combination exhibited more activity than the individual drugs to stimulate toxicity and apoptosis in cervical cancer cells based on HSP90 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. Zhang S, Xu H, Zhang L, Qiao Y. Cervical cancer: Epidemiology, risk factors and screening. Chin J Cancer Res. 2020;32:720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  4. Johnson CA, James D, Marzan A, Armaos M. Cervical Cancer: an overview of pathophysiology and management. Semin Oncol Nurs. 2019;35:166–74.

    Article  PubMed  Google Scholar 

  5. Bedell SL, Goldstein LS, Goldstein AR, Goldstein AT. Cervical Cancer screening: past, Present, and Future. Sex Med Rev. 2020;8:28–37.

    Article  PubMed  Google Scholar 

  6. Wipperman J, Neil T, Williams T. Cervical Cancer: evaluation and management. Am Fam Physician. 2018;97:449–54.

    PubMed  Google Scholar 

  7. Pectasides D, Kamposioras K, Papaxoinis G, Pectasides E. Chemotherapy for recurrent cervical cancer. Cancer Treat Rev. 2008;4:603–13.

    Article  Google Scholar 

  8. Eifel PJ. Concurrent chemotherapy and radiation therapy as the standard of care for cervical cancer. Nat Clin Pract Oncol. 2006;3:248–55.

    Article  CAS  PubMed  Google Scholar 

  9. Tzioras S, Pavlidis N, Paraskevaidis E, Ioannidis JP. Effects of different chemotherapy regimens on survival for advanced cervical cancer: systematic review and meta-analysis. Cancer Treat Rev. 2007;33:24–38.

    Article  CAS  PubMed  Google Scholar 

  10. Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18:345–60.

    Article  CAS  PubMed  Google Scholar 

  11. Gümus M, Ozgur A, Tutar L, Disli A, Koca I, Tutar Y, Design. Synthesis, and evaluation of heat shock protein 90 inhibitors in human breast Cancer and its metastasis. Curr Pharm Biotechnol. 2016;17:1231–45.

    Article  PubMed  Google Scholar 

  12. Özgür A, Tutar Y. Heat shock protein 90 inhibition in Cancer Drug Discovery: from Chemistry to Futural Clinical Applications. Anticancer Agents Med Chem. 2016;16:280–90.

    Article  PubMed  Google Scholar 

  13. Ren X, Li T, Zhang W, Yang X. Targeting heat-shock protein 90 in Cancer: an update on combination therapy. Cells. 2022;11:2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costa TEMM, Raghavendra NM, Penido C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur J Med Chem. 2020;189:112063.

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Wang L, You QD, Xu XL. Heat shock protein 90 inhibitors: an Update on Achievements, Challenges, and future directions. J Med Chem. 2020;63(5):1798–822.

    Article  CAS  PubMed  Google Scholar 

  16. Koca İ, Gümüş M, Özgür A, Dişli A, Tutar Y. A Novel Approach to Inhibit Heat Shock Response as Anticancer Strategy by Coumarine Compounds Containing Thiazole Skeleton. Anticancer Agents Med Chem. 2015;15:916–30.

    Article  CAS  PubMed  Google Scholar 

  17. Karagöz GE, Rüdiger SG. Hsp90 interaction with clients. Trends Biochem Sci. 2015;40:117–25.

    Article  PubMed  Google Scholar 

  18. Sidera K, Patsavoudi E. HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov. 2014;9:1–20.

    Article  CAS  PubMed  Google Scholar 

  19. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Özgür A. Investigation of anticancer activities of STA-9090 (ganetespib) as a second generation HSP90 inhibitor in Saos-2 osteosarcoma cells. J Chemother. 2021;33:554–63.

    Article  PubMed  Google Scholar 

  21. Guan L, Zou Q, Liu Q, Lin Y, Chen S. HSP90 inhibitor Ganetespib (STA-9090) inhibits Tumor Growth in c-Myc-dependent esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:2997–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Trepel JB, Neckers LM, Giaccone G. STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs. 2010;11:1466–76.

    CAS  PubMed  Google Scholar 

  23. Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: a new wave in hematooncology. Exp Hematol. 2018;61:10–25.

    Article  CAS  PubMed  Google Scholar 

  24. Blair HA, Venetoclax. A review in previously untreated chronic lymphocytic leukaemia. Drugs. 2020;80:1973–80.

    Article  CAS  PubMed  Google Scholar 

  25. Juárez-Salcedo LM, Desai V, Dalia S. Venetoclax: evidence to date and clinical potential. Drugs Context. 2019;8:212574.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lachowiez C, DiNardo CD, Konopleva M. Venetoclax in acute myeloid leukemia - current and future directions. Leuk Lymphoma. 2020;61:1313–22.

    Article  CAS  PubMed  Google Scholar 

  27. Huang RY, Pei L, Liu Q, Chen S, Dou H, Shu G, Yuan ZX, Lin J, Peng G, Zhang W, Fu H. Isobologram Analysis: a Comprehensive Review of Methodology and Current Research. Front Pharmacol. 2019;10:1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Özgür A, Tutar Y. Heat shock protein 90 inhibitors in oncology. Curr Proteom. 2014;11:2–16.

    Article  Google Scholar 

  29. Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta. 2012;1823:742–55.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao L, Lu X, Ruden DM. Effectiveness of hsp90 inhibitors as anti-cancer drugs. Mini Rev Med Chem. 2006;6:1137–43.

    Article  CAS  PubMed  Google Scholar 

  31. Subaiea G, Rizvi SMD, Yadav HKS, Al Hagbani T, Abdallah MH, Khafagy ES, Gangadharappa HV, Hussain T, Abu Lila AS. Ganetespib with Methotrexate Acts synergistically to impede NF-κB/p65 signaling in Human Lung Cancer A549 cells. Pharmaceuticals (Basel). 2023;16:230.

    Article  CAS  PubMed  Google Scholar 

  32. Lai CH, Park KS, Lee DH, Alberobello AT, Raffeld M, Pierobon M, Pin E, Petricoin Iii EF, Wang Y, Giaccone G. HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer. Oncogene. 2014;33:4867–76.

    Article  CAS  PubMed  Google Scholar 

  33. Proia DA, Sang J, He S, Smith DL, Sequeira M, Zhang C, Liu Y, Ye S, Zhou D, Blackman RK, Foley KP, Koya K, Wada Y. Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. Invest New Drugs. 2012;30:2201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solit DB, Rosen N. Hsp90: a novel target for cancer therapy. Curr Top Med Chem. 2006;6:1205–14.

    Article  CAS  PubMed  Google Scholar 

  35. Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–85.

    Article  CAS  PubMed  Google Scholar 

  36. Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, Chen L, Li D, Carretero J, Li YC, Sinha P, Carey CD, Borgman CL, Jimenez JP, Meyerson M, Ying W, Barsoum J, Wong KK, Shapiro GI. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res. 2012;18:4973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kızıl HE, Caglayan C, Darendelioğlu E, Ayna A, Gür C, Kandemir FM, Küçükler S. Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Mol Biol Rep. 2023;50:3479–88.

    Article  PubMed  Google Scholar 

  38. Emre Kızıl H, Gür C, Ayna A, Darendelioğlu E, Küçükler S, Sağ S. Contribution of oxidative stress, apoptosis, endoplasmic reticulum stress and autophagy pathways to the Ameliorative Effects of Hesperidin in NaF-Induced Testicular toxicity. Chem Biodivers. 2023;20:e202200982.

    Article  PubMed  Google Scholar 

  39. Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted Cancer therapeutics. Adv Pharm Bull. 2019;9:205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582–92.

    Article  PubMed  Google Scholar 

  42. Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39:BSR20180992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H, Yamamoto T. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 2015;46:47–54.

    Article  CAS  PubMed  Google Scholar 

  44. Özgür A, Kara A, Gökşen Tosun N, Tekin Ş, Gökçe İ. Debio-0932, a second generation oral Hsp90 inhibitor, induces apoptosis in MCF-7 and MDA-MB-231 cell lines. Mol Biol Rep. 2021;48:3439–49.

    Article  PubMed  Google Scholar 

  45. Wang X, Chen M, Zhou J, Zhang X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol. 2014;45:18–30.

    Article  PubMed  Google Scholar 

  46. Li ZN, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (review). Oncol Rep. 2023;49:6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dilay Karademir and Aykut Özgür. The first draft of the manuscript was written by Aykut Özgür and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dilay Karademir.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Consent for publication

All authors agree with the publication of this manuscript in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karademir, D., Özgür, A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol 40, 234 (2023). https://doi.org/10.1007/s12032-023-02107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02107-5

Keywords

Navigation