Skip to main content

Advertisement

Log in

Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Athanasiou A, Damaskos C, Moris D, Dimitroulis D, Spartalis E, Garmpis N, Valsami S, Davakis S, Sakellariou S, Kykalos S, Tsourouflis G. From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J Gastroenterol. 2017;23(29):5282. https://doi.org/10.3748/wjg.v23.i29.5282.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Acosta EP, Singh SK, Banerjee S, Lillard JW, Singh R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget. 2017;8(10):17216. https://doi.org/10.3390/cells9091976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Aubé C, Lebigot J, Bazeries P, Cartier V, Boursier J. Liver fibrosis, cirrhosis, and cirrhosis-related nodules: imaging diagnosis and surveillance. Diagn Interv Imaging. 2017;98(6):455–68. https://doi.org/10.1177/1747493018778713.

    Article  PubMed  Google Scholar 

  4. Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60(8):863–75. https://doi.org/10.1016/j.addr.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  5. Alving CR. Delivery of liposome-encapsulated drugs to macrophages. Pharmacol Ther. 1983;22(3):407–24. https://doi.org/10.1016/0163-7258(83)90010-4.

    Article  CAS  PubMed  Google Scholar 

  6. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta (BBA). 2020;1873(1):188314. https://doi.org/10.1016/j.bbcan.2019.188314.

    Article  CAS  Google Scholar 

  7. Abdelaziz AE, Samy A, Salama A, Elmowafy M, Raslan MA, Said RA, El-Eraky W, El Awdan S, Viitala T. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS PharmSciTech. 2016;17:663–72. https://doi.org/10.1208/s12249-015-0391-0.

    Article  CAS  PubMed  Google Scholar 

  8. Ali A, Ahmed S. Recent advances in edible polymer-based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem. 2018;66(27):6940–67. https://doi.org/10.1021/acs.jafc.8b01052.

    Article  CAS  PubMed  Google Scholar 

  9. Abou-Alfa GK, Lau G, Furuse J, Kudo M, Chan SL, Kelley RK, Sukeepaisarnjaroen W, Kang YK, Van Dao T, De Toni EN, Rimassa L. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022. https://doi.org/10.1056/EVIDoa2100070.

    Article  Google Scholar 

  10. Bray F, Ferlay J, Torre LA, Siegel RL, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  11. Benson AB III, Nelson VM. Status of targeted therapies in the adjuvant treatment of colon cancer. J Gastrointest Oncol. 2013;4(3):245. https://doi.org/10.3978/j.issn.2078-6891.2013.035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bernabeu E, Limeres MJ, Moretton MA, Chiappetta DA, Cuestas ML. Thinking small, doing big: current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Mater Sci Eng C. 2019;95:328–41. https://doi.org/10.1016/j.msec.2018.11.001.

    Article  CAS  Google Scholar 

  13. Brick AJ, Percy AG, Kwabi C, Clement J, Shah K, Duh MS, Rogers MJ, Antràs L, Choueiri TK, Jayawant SS, Chen K. Angiogenesis inhibitor therapies for metastatic renal cell carcinoma: effectiveness, safety and treatment patterns in clinical practice-based on medical chart review. BJU Int. 2010;105(9):1247–54. https://doi.org/10.1111/j.1464-410X.2009.08972.

    Article  PubMed  Google Scholar 

  14. Bjarnason GA, Knox JJ, MacKenzie M, Harshman LC, Wood L, Srinivas S, Xie W, Vaishampayan UN, Tan MH, Rha SY, Donskov F. Conditional survival of patients with metastatic renal-cell carcinoma treated with VEGF-targeted therapy: a population-based study. Lancet Oncol. 2012;13(9):927–35. https://doi.org/10.1007/s12032-017-1053-8.

    Article  CAS  PubMed  Google Scholar 

  15. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72(2):441–55. https://doi.org/10.1083/jcb.72.2.441.

    Article  CAS  PubMed  Google Scholar 

  16. Bataller R, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115(2):209–18. https://doi.org/10.1007/s00424-022-02723-6.

    Article  CAS  PubMed  Google Scholar 

  17. Breitbach CJ, Bell JC, Hwang TH, Kirn DH, Burke J. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother. 2015;4:25–31. https://doi.org/10.2147/OV.S59640.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Breitbach CJ, Lim HY, Chung HC, Heo J, Ruo L, Bloomston M, Cho M, Reid T, Rose S, Kim CW, Burke J. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36. https://doi.org/10.1038/nm.3089.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9(3):474. https://doi.org/10.3390/nano9030474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Brenner AJ, Hong DS, Lim HY, Lee JL, Sachdev J, Kang YK, Park K, Borad M, Ejadi S, Kim TY, Shin S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630–7. https://doi.org/10.1038/s41416-020-0802-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ballout F, Rahal ON, Habli Z, Fatfat M, Gali-Muhtasib H. Thymoquinone-based nanotechnology for cancer therapy: promises and challenges. Drug Discov Today. 2018;23(5):1089–98. https://doi.org/10.1016/j.drudis.2018.01.043.

    Article  CAS  PubMed  Google Scholar 

  22. Baetke SC, Lammers TGGM, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88(1054):20150207. https://doi.org/10.1259/bjr.20150207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chen B, Kong FH, Zou H, Xiong L, Miao XY, Wen Y, Liu X, Zhou JJ. End-stage liver disease score and future liver remnant volume predict post-hepatectomy liver failure in hepatocellular carcinoma. World J Clin Cases. 2019;7(22):3734. https://doi.org/10.7150/thno.54822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Center MM, Jemal A. International trends in liver cancer incidence ratesinternational liver cancer incidence trends. Cancer Epidemiol Biomark Prev. 2011;20(11):2362–8. https://doi.org/10.1158/1055-9965.EPI-11-0643.

    Article  Google Scholar 

  25. Chowdhury I, Banerjee S, Singh SK, Lillard JW Jr, Singh R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Front Biosci (Elite Ed). 2017;9:235. https://doi.org/10.2741/e798.

    Article  PubMed  Google Scholar 

  26. Coffelt SB, de Visser KE. Revving up dendritic cells while braking PD-L1 to jump-start the cancer-immunity cycle motor. Immunity. 2016;44(4):722–4. https://doi.org/10.1016/j.immuni.2016.03.014.

    Article  CAS  PubMed  Google Scholar 

  27. Coulie PG, Boon T, Eynde BJVD, Bruggen PVD. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208. https://doi.org/10.1146/annurev.immunol.24.021605.090733.

    Article  CAS  PubMed  Google Scholar 

  28. Campana L, Iredale JP (2017) Regression of liver fibrosis. In Seminars in liver disease, vol. 58, No. 01. Thieme Medical Publishers, Stuttgart, pp 001–010. https://doi.org/10.1055/s-0036-1597816

  29. Cabrera R, Nelson DR. the management of hepatocellular carcinoma. Aliment Pharmacol Ther. 2010;31(4):461–76. https://doi.org/10.1111/j.1365-2036.2009.04200.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B. 2016;6(4):261–7. https://doi.org/10.1016/j.apsb.2016.05.011.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chen F, Zhang J, Wang L, Wang Y, Chen M. Tumor pH e-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale. 2015;7(38):15763–79. https://doi.org/10.1039/c5nr04612b.

    Article  CAS  PubMed  Google Scholar 

  32. Cainap C, Pan H, Chung IJ, Qin S, Huang WT, Cheng Y, Kudo M, Kang YK, Chen PJ, Toh HC, Gorbunova V. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2015;33(2):172. https://doi.org/10.1200/JCO.2013.54.3298.

    Article  CAS  PubMed  Google Scholar 

  33. Craxi A, Santoro A, Bruix J, Raoul JL, Bolondi L, Beaugrand M, Sherman M, Galle PR, Mazzaferro V, Sangiovanni A, Porta C. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol. 2012;57(4):821–9. https://doi.org/10.1016/j.jhep.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng AL, Tsao CJ, Kim JS, Feng J, Luo R, Qin S, Ye S, Kang YK, Chen Z, Yang TS, Xu J. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. https://doi.org/10.1016/S1470-2045(08)70285-7.

    Article  CAS  PubMed  Google Scholar 

  35. Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother. 2013. https://doi.org/10.1126/science.342.6165.1432.

    Article  Google Scholar 

  36. Cowey CL, Lao CD, Schadendorf D, Hodi FS, Wagstaff J, Grob JJ, Rutkowski P, Gonzalez R, Chiarion-Sileni V, Dummer R, Ferrucci PF. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–92. https://doi.org/10.1016/S1470-2045(18)30700-9.

    Article  PubMed  Google Scholar 

  37. Chen D, Tang F, Liu H, Li L, Liu T, Teng X, He J. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano. 2010;4(11):6874–82. https://doi.org/10.1021/nn100918a.

    Article  CAS  PubMed  Google Scholar 

  38. Chajon E, Castelli J, Marsiglia H, De Crevoisier R. The synergistic effect of radiotherapy and immunotherapy: a promising but not simple partnership. Crit Rev Oncol Hematol. 2017;111:124–32. https://doi.org/10.1016/j.critrevonc.2017.01.017.

    Article  PubMed  Google Scholar 

  39. Chen HF, Chen HS, Bai JZ, Chen J, Chang JF, Bian JG, Cai X, Ban Y, Chen JC, Chen YB. Observation of a near-threshold enhancement in the pp mass spectrum from radiative J/ψ → γ p p decays. Phys Rev Lett. 2003;91(2):022001. https://doi.org/10.1103/PhysRevLett.91.022001.

    Article  CAS  PubMed  Google Scholar 

  40. Cervantes A, Cho DC, Schwartz GK, Weiss GJ, Shapiro GI, Infante JR, Tabernero J, Paz-Ares L, LoRusso PM, Alsina M, Gounder MM. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–17. https://doi.org/10.1158/2159-8290.CD-12-0429.

    Article  CAS  PubMed  Google Scholar 

  41. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    Article  CAS  PubMed  Google Scholar 

  42. Duyverman AM, Koppel C, Huang P, Samuel R, Hiddingh L, Roberge S, Reiberger T, Chen Y, Huang Y, Lauwers GY, Zhu AX. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen–positive myeloid cell infiltration in mice. Hepatology. 2014;59(4):1435–47. https://doi.org/10.1002/hep.26790.

    Article  CAS  PubMed  Google Scholar 

  43. D’souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Control Release. 2015;203:126–39. https://doi.org/10.1016/j.jconrel.2015.02.0220168-3659.

    Article  CAS  PubMed  Google Scholar 

  44. De Oliveira AC, Santoro A, Gane E, Blanc JF, Raoul JL, Llovet JM, Hilgard P, Ricci S, Mazzaferro V, Forner A, Schwartz M. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  PubMed  Google Scholar 

  45. Duan J, Wang K, Tan W, He X, Lin X, He C. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol. 2004;4(6):585–9. https://doi.org/10.1166/jnn.2004.011.

    Article  CAS  PubMed  Google Scholar 

  46. Dogan AA, Shen H, Min J, Wang Q, Le S, Huang X, Wang X, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle delivery systems for DNA/RNA and their potential applications in nanomedicine. Curr Top Med Chem. 2019;19(27):2507–23. https://doi.org/10.2174/1568026619666191024170212.

    Article  CAS  PubMed  Google Scholar 

  47. Doppalapudi S, Bulbake U, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12–4. https://doi.org/10.3390/pharmaceutics9020012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752–63. https://doi.org/10.1053/j.gastro.2008.02.090.

    Article  PubMed  Google Scholar 

  49. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76. https://doi.org/10.1053/j.gastro.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  50. Fahr A, Rothkopf C, Fricker G, Scherphof GL, Kamps JAAM. Uptake of phosphatidylserine-containing liposomes by liver sinusoidal endothelial cells in the serum-free perfused rat liver. Biochim Biophys (BBA). 2005;1668(1):10–6. https://doi.org/10.1016/j.bbamem.2004.10.013.

    Article  CAS  PubMed  Google Scholar 

  51. Fukumura D, Berk DA, Yuan F, Dellian M, Leunig M, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Can Res. 1995;55(17):3752–6.

    Google Scholar 

  52. Farrell AT, Booth B, Liang C, Williams G, Saber H, Jee JM, Chidambaram N, Kane RC, Tang S, Morse D, Sridhara R. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8. https://doi.org/10.1158/1078-0432.CCR-06-1249.

    Article  PubMed  Google Scholar 

  53. Finch G, Havel H, Wolfgang M, Strode P, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18:1373–8. https://doi.org/10.1208/s12248-016-9961-7.

    Article  CAS  PubMed  Google Scholar 

  54. Glaeser H, Becquemont L, Bhardwaj RK, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645–50. https://doi.org/10.1124/jpet.102.034728.

    Article  CAS  PubMed  Google Scholar 

  55. Ganem D, Prince AM. Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med. 2004;350(11):1118–29. https://doi.org/10.1056/NEJMra031087.

    Article  CAS  PubMed  Google Scholar 

  56. Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol (WJG). 2014;20(23):7242. https://doi.org/10.3748/wjg.v20.i23.7242.

    Article  CAS  PubMed  Google Scholar 

  57. Ghosal K, Mariyam M, Thomas S, Kalarikkal N, Latha MS. Dendrimers: general aspects, applications and structural exploitations as prodrug/drug-delivery vehicles in current medicine. Mini Rev Med Chem. 2018;18(5):439–57. https://doi.org/10.2174/1389557517666170512095151.

    Article  CAS  PubMed  Google Scholar 

  58. Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release. 2014;194:238–56. https://doi.org/10.1016/j.jconrel.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  59. Greten TF, Sangro B. Targets for immunotherapy of liver cancer. J Hepatol. 2018;68(1):157–66. https://doi.org/10.1016/j.jhep.2017.09.007.

    Article  CAS  Google Scholar 

  60. Gao D, Sun N, Yang P, Zhao X, Wang Y, Tian Z, Ma T, Yang Z. Multifunctional cargo-free nanomedicine for cancer therapy. Int J Mol Sci. 2018;19(10):2963. https://doi.org/10.3390/ijms19102963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hanaoka H, Sato K, Watanabe R, Nakajima T, Phung Y, Gao W, Harada T, Kim I, Paik CH, Choyke PL, Ho M. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine. 2015;10(7):1139–47. https://doi.org/10.2217/nnm.14.194.

    Article  CAS  PubMed  Google Scholar 

  62. He G, He J, Yu Y, Zhang Y, Yan Y, Zheng Y, Xie Y, He Z, Wei Y, Song X. Gene delivery with active targeting to ovarian cancer cells mediated by folate receptor α. J Biomed Nanotechnol. 2013;9(5):833–44. https://doi.org/10.1056/NEJMoa2027071.

    Article  CAS  PubMed  Google Scholar 

  63. Hosui A, Hikita H, Ishida H, Shimizu S, Takehara T, Kodama T, Miyagi T, Tatsumi T, Noda T, Nagano H, Doki Y. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52(5):698–704. https://doi.org/10.1016/j.jhep.2009.12.024.

    Article  CAS  PubMed  Google Scholar 

  64. He AR, Morse MA, Abada PB, Kim R, Sun W, Mynderse M, Finn RS. The role of angiogenesis in hepatocellular carcinoma role of angiogenesis in HCC. Clin Cancer Res. 2019;25(3):912–20. https://doi.org/10.1158/1078-0432.CCR-18-1254.

    Article  PubMed  Google Scholar 

  65. Heidarinasab A, Ardjmand M, Foroud N, Akbarzadeh A. Delivery of cisplatin by folic acid-targeted liposomal nanoparticles into liver cancer cell line. Int J Polym Mater Polym Biomater. 2018;67(14):865–72. https://doi.org/10.1080/10428194.2017.

    Article  Google Scholar 

  66. Ho CM, Chen HL, Hu RH, Lee PH. Harnessing immunotherapy for liver recipients with hepatocellular carcinoma: a review from a transplant oncology perspective. Ther Adv Med Oncol. 2019;11:1758835919843463. https://doi.org/10.1177/1758835919843463.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Hill A, Lenz HJ, Leach JL, Desai J, Axelson M, Morse MA, Overman MJ, McDermott R, Lonardi S, Moss RA, Goldberg MV. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91. https://doi.org/10.1016/S1470-2045(17)30422-9.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hooi L, Gu M, Toh TB, Wang X, Tenen DG, Chow EKH. Nanodiamond-based platform for intracellular-specific delivery of therapeutic peptides against hepatocellular carcinoma. Adv Ther. 2018;1(8):1800110. https://doi.org/10.1126/science.aat8127.

    Article  CAS  Google Scholar 

  69. Hamad MA, Hafez MZ, Mohamed NK, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int J Cancer. 2017;140(7):1475–84. https://doi.org/10.1002/ijc.30517.

    Article  CAS  PubMed  Google Scholar 

  70. Hong RL, Tseng YL. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer Interdiscip Int J Am Cancer Soc. 2001;91(9):1826–33. https://doi.org/10.18632/oncotarget.12736.

    Article  CAS  Google Scholar 

  71. Han G, Blanc JF, Yang J, Yan L, Lu L, Kudo M, Finn RS, Poon RT, Tak WY, Yu X, Lee JH. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology. 2014;60(5):1697–707. https://doi.org/10.1002/hep.27290.

    Article  CAS  PubMed  Google Scholar 

  72. Imamura H, Hasegawa K, Sano K, Takahashi M, Ishizawa T, Aoki T, Inoue Y, Sugawara Y, Kokudo N, Makuuchi M. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology. 2008;134(7):1908–16. https://doi.org/10.1002/jhbp.1135.

    Article  PubMed  Google Scholar 

  73. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8. https://doi.org/10.1016/j.drudis.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  74. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1(3):297.

    CAS  Google Scholar 

  75. Iñarrairaegui M, Melero I, Sangro B. Immunotherapy of Hepatocellular Carcinoma: Facts and HopesImmunotherapy of HCC. Clin Cancer Res. 2018;24(7):1518–24. https://doi.org/10.1158/1078-0432.CCR-17-0289.

    Article  CAS  PubMed  Google Scholar 

  76. Jemal A, Johnson CJ, Ward EM, Cronin KA, Ma J, Ryerson AB, Mariotto A, Lake AJ, Wilson R, Sherman RL, Anderson RN. Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Natl Cancer Inst (JNCI). 2017;109(9):djx030. https://doi.org/10.1093/jnci/djx030.

    Article  PubMed  Google Scholar 

  77. Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol. 2010;176(1):14–21. https://doi.org/10.2353/ajpath.2010.090136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Jelic S, Le Jemtel TH. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea. Trends Cardiovasc Med. 2008;18(7):253–60. https://doi.org/10.1016/j.tcm.2008.11.008.

    Article  CAS  PubMed  Google Scholar 

  79. Jamil MO, Hathaway A, Mehta A. Tivozanib: status of development. Curr Oncol Rep. 2015;17:1–7. https://doi.org/10.1007/s11912-015-0451-3.

    Article  CAS  Google Scholar 

  80. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):27–40. https://doi.org/10.3109/21691401.

    Article  CAS  PubMed  Google Scholar 

  81. Joo MK, Kim SH, Tsouris V, Kwon IC, Won YY. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol Adv. 2014;32(5):1037–50. https://doi.org/10.1016/j.biotechadv.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  82. Kudo M. Immune checkpoint blockade in hepatocellular carcinoma: 2017 update. Liver Cancer. 2017;6(1):1–12. https://doi.org/10.1159/000449342.

    Article  Google Scholar 

  83. Koch BE, Campbell F, Bos FL, Arias-Alpizar G, Huwyler J, Sieber S, Kros A, Bussmann J. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano. 2018;12(3):2138–50. https://doi.org/10.1021/acsnano.7b06995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Konno H, Matsuda I, Maruo Y, Nakamura S, Baba S. Intra-arterial liposomal adriamycin for metastatic adenocarcinoma of the liver. Eur Surg Res. 1995;27(5):301–6. https://doi.org/10.1159/000129413.

    Article  CAS  PubMed  Google Scholar 

  85. Kang JH, Toita R, Murata M. Liver cell-targeted delivery of therapeutic molecules. Crit Rev Biotechnol. 2016;36(1):132–43. https://doi.org/10.3109/07388551.2014.930017.

    Article  CAS  PubMed  Google Scholar 

  86. Kawaguchi A, Kurihara C, Kikuchi K, Higashiyama M, Mataki N, Hokari R, Nagao S, Kawai T, Okada Y, Kondo T, Itoh K. Expression of PD-1, PD-L1, and PD-L2 in the liver in autoimmune liver diseases. Off J Am Coll Gastroenterol (ACG). 2007;102(2):302–12. https://doi.org/10.1111/j.1572-0241.2006.00948.

    Article  Google Scholar 

  87. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  88. Khwaja A, Liapi E, Hong K, Torbenson MS, Georgiades CS, Geschwind JFH. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res. 2006;12(8):2563–7. https://doi.org/10.1158/1078-0432.CCR-05-2225.

    Article  CAS  PubMed  Google Scholar 

  89. Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005;6(1):3–5. https://doi.org/10.2174/1389201053167158.

    Article  CAS  PubMed  Google Scholar 

  90. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77. https://doi.org/10.1016/j.addr.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  91. Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: progress and future opportunities. Pharmacol Res. 2019;144:210–26. https://doi.org/10.1021/acs.inorgchem.1c00408.

    Article  CAS  PubMed  Google Scholar 

  92. Singh SK, Singh S, Lilliard JW Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomed. 2017;12:6205. https://doi.org/10.2147/IJN.S140325.

    Article  CAS  Google Scholar 

  93. Singh SK, Lilliard JW Jr, Singh R. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett. 2018;427:49–62. https://doi.org/10.1016/j.canlet.2018.04.017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013;65(13–14):1716–30. https://doi.org/10.1016/j.addr.2013.08.00.

    Article  CAS  PubMed  Google Scholar 

  95. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48(4):1312–27. https://doi.org/10.1002/hep.22506.

    Article  CAS  PubMed  Google Scholar 

  96. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504. https://doi.org/10.1021/mp800049w.

    Article  CAS  PubMed  Google Scholar 

  97. Liu F, Yuan H, Li X, Guan Y, Wang M. Applications of nano-drug delivery systems in interventional-targeted for hepatocellular carcinoma: a review. Chin J Hepatobiliary Surg. 2018. https://doi.org/10.1056/NEJMoa1915745.

    Article  Google Scholar 

  98. Li B, He C, Xue H, You J, Zhao P, Yang T, Chen Y, Liu Y, Zhang X, Fan L, Lee RJ. Enhancing the therapeutic effect via elimination of hepatocellular carcinoma stem cells using Bmi1 siRNA delivered by cationic cisplatin nanocapsules. Nanomed Nanotechnol Biol Med. 2018;14(7):2009–21. https://doi.org/10.1016/j.nano.2018.05.012.

    Article  CAS  Google Scholar 

  99. Li B, Lin D, Hu Q, Wen S, Zou Z, Wang Z, Fang J. The current landscape of oral squamous cell carcinoma: a comprehensive analysis from ClinicalTrails.gov. Cancer Control. 2022. https://doi.org/10.1177/10732748221080348.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Liang L, He X. A narrative review of microRNA therapeutics: Understanding the future of microRNA research. Precis Cancer Med. 2021;4:33. https://doi.org/10.21037/pcm-21-28.

    Article  Google Scholar 

  101. McKenna DR, Hourdequin KC, Schpero WL, Piazik BL, Larson RJ. Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis. Ann Oncol. 2013;24(12):2952–62. https://doi.org/10.1093/annonc/mdt294.

    Article  PubMed  Google Scholar 

  102. Mochalova AS, Koroleva IA. Clinical and economic analysis of the feasibility of using Dicarbamine for the prevention of the toxic effects of antineoplastic chemotherapy. Vopr Onkol. 2013;59(5):637–41. https://doi.org/10.7150/thno.54822.

    Article  CAS  PubMed  Google Scholar 

  103. Mumper RJ, Dong X. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine. 2010;5(4):597–615. https://doi.org/10.2217/nnm.10.35.

    Article  PubMed  Google Scholar 

  104. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007;131(11):1728–34. https://doi.org/10.2337/dc21-S002.

    Article  CAS  PubMed  Google Scholar 

  105. Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res. 2001;18:1–8. https://doi.org/10.1023/a:1011054123304.

    Article  CAS  PubMed  Google Scholar 

  106. Martin AP, Mitchell C, Zhang G, Hamed H, Ryan K, Park MA, Graf M, Rahmani M, Hylemon PB, Liu X, Spiegel S. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008;7(10):1648–62. https://doi.org/10.4161/cbt.7.10.6623.

    Article  PubMed  Google Scholar 

  107. Mohanraj VJ, Chen YJTJOPR. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73. https://doi.org/10.1208/pt0804098.

    Article  Google Scholar 

  108. Miller AD. Lipid-based nanoparticles in cancer diagnosis and therapy. J Drug Deliv. 2013. https://doi.org/10.1155/2013/165981.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Muller RH, Mader K, Gohla S. Enzymatic degradation of Dynasan 114 SLN—effect of surfactants and particle size. Eur J Pharm Biohgarm. 2000;50:161–70. https://doi.org/10.1016/s0939-6411(00)00087-4.

    Article  CAS  Google Scholar 

  110. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12_Part_1):6387–92. https://doi.org/10.1186/s13017-019-0274.

    Article  CAS  PubMed  Google Scholar 

  111. Naz A, Obaid A, Ikram A, Ali A, Awan FM, Ahmad J, Naveed AK, Janjua HA. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance. Sci Rep. 2017;7(1):11448. https://doi.org/10.1038/s41598-017-11943-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Nakashima C, Iwanaga K, Komiya K, Sueoka-Aragane N, Ureshino N, Nakamura T, Miyahara T, Abe T, Matsunaga H, Kimura S. Severity and predictive factors of adverse events in pemetrexed-containing chemotherapy for non-small cell lung cancer. Med Oncol. 2017;34:1–9. https://doi.org/10.1007/s12032-017-1053-8.

    Article  CAS  Google Scholar 

  113. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5(3):305. https://doi.org/10.15171/apb.2015.043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Nasser I, Kruskal JB, Cay O, Thomas P, Clouse ME. Liver metastases from colorectal cancer: drug delivery with liposome-encapsulated doxorubicin. Radiology. 1997;205(1):95–101. https://doi.org/10.1148/radiology.205.1.9314969.

    Article  PubMed  Google Scholar 

  115. Oenema A, Trichopoulou A, Oomen D, Soerjomataram I, Coebergh JW, Lemmens V, Benetou V, Barendregt J, de Vries E. Increased consumption of fruit and vegetables and future cancer incidence in selected European countries. Eur J Cancer. 2010;46(14):2563–80. https://doi.org/10.1016/j.ejca.2010.07.026.

    Article  PubMed  Google Scholar 

  116. Ortega-Rodríguez A, García-Pinel B, Porras-Alcalá C, Sarabia F, Prados J, Melguizo C, López-Romero JM. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials. 2019;9(4):638. https://doi.org/10.3390/nano9040638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Pauli G, Fayez NA, Chao PH, Böttger R, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev. 2020;154:79–101. https://doi.org/10.1016/j.addr.2020.06.017.

    Article  CAS  PubMed  Google Scholar 

  118. Pozzi A, Hughey CC, Lark DS, Trefts E, Boyd KL, Lantier L, Zent R, Wasserman DH. Energy metabolism couple’s hepatocyte integrin-linked kinase to liver glucoregulation and postabsorptive responses of mice in an age-dependent manner. Am J Physiol Endocrinol Metab. 2019;316(6):E1118–35. https://doi.org/10.1152/ajpendo.00496.2018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Pan CQ, Zhang JX. Natural history and clinical consequences of hepatitis B virus infection. Int J Med Sci. 2005;2(1):36. https://doi.org/10.7150/ijms.2.36.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. https://doi.org/10.3322/canjclin.55.2.74.

    Article  PubMed  Google Scholar 

  121. Potz D, Lin J, Chiu MI, Robinson MO, Farlow S, Zi T, Sun X, Heyer J, Zhou Y. Abstract A12: variation in response to triple VEGFR inhibitor tivozanib in mouse models of hepatocellular carcinoma. Mol Cancer Ther. 2009;8(12_Supplement):A12. https://doi.org/10.1371/journal.pone.0105886.

    Article  CAS  Google Scholar 

  122. Polenz I, Baret JC, Petit J, Herminghaus S, Bäumchen O. Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polymersomes. Eur Phys J E. 2016;39:1–6. https://doi.org/10.1140/epje/i2016-16059-8.

    Article  CAS  Google Scholar 

  123. Pereira AC, Gonçalves CÂ, Vazquez FDL, Ambrosano GMB, Petit J, Sarracini KLM, Guerra LM, Cortellazzi KL. Estratégias para o enfrentamento do absenteísmo em consultas odontológicas nas Unidades de Saúde da Família de um município de grande porte: uma pesquisa-ação. Cien Saude Colet. 2015;20:449–60. https://doi.org/10.1590/1413-81232015202.00702014.

    Article  PubMed  Google Scholar 

  124. Pottoo FH, Barkat MA, Das SS, Beg S, Rahman Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr Pharm Des. 2020;26(11):1167–80. https://doi.org/10.2174/1381612826666200206094529.

    Article  CAS  PubMed  Google Scholar 

  125. Pottoo FH, Barkat MA, Rizwanullah M, Beg S, Siddiqui S, Ahmad FJ. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech. 2019;20:1–14. https://doi.org/10.1208/s12249-019-1304-4.

    Article  CAS  Google Scholar 

  126. Patel P, Patel M. Nanostructured lipid carriers—a versatile carrier for oral delivery of lipophilic drugs. Recent Pat Nanotechnol. 2021;15(2):154–64. https://doi.org/10.2174/1872210514666200909154959.

    Article  CAS  PubMed  Google Scholar 

  127. Pottoo FH, Javed MN, Barkat MA, Harshita, Alam MS, Naim MJ, Ansari MA, Alam O, Sharma S, Barreto GE, Ashraf GM (2020) Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 52(1):185–204. https://doi.org/10.1080/03602532.2020.1726942

  128. Qiu H, Liang L, Zeng W, Hong W, Yang X, Gu Y, Qi Z, Ma L, Xie J. Immune-related lncRNA to construct novel signature and predict the immune landscape of human hepatocellular carcinoma. Mol Ther Nucl Acids. 2020;22:937–47. https://doi.org/10.1016/j.omtn.2020.10.002.

    Article  CAS  Google Scholar 

  129. Russo A, Sagnelli E, Macera M, Coppola N, Sagnelli C. Epidemiological and etiological variations in hepatocellular carcinoma. Infection. 2020;48:7–17. https://doi.org/10.1007/s15010-019-01345.

    Article  PubMed  Google Scholar 

  130. Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J Hepatol. 2011;55(6):1461–6. https://doi.org/10.1177/1747493018778713.

    Article  CAS  PubMed  Google Scholar 

  131. Rockey DC. Current and future anti-fibrotic therapies for chronic liver disease. Clin Liver Dis. 2008;12(4):939–62. https://doi.org/10.1016/j.cld.2008.07.011.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Romero EL, Regts J, Morilla MJ, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 1999;448(1):193–6. https://doi.org/10.1016/s0014-5793(99)00364-6.

    Article  CAS  PubMed  Google Scholar 

  133. Ryoo BY, Choi GH, Shim JH, Kim KM, Kim MJ, Ryu MH, Kang YK, Shin YM, Lim YS, Lee HC. Sorafenib alone versus sorafenib combined with transarterial chemoembolization for advanced-stage hepatocellular carcinoma: results of propensity score analyses. Radiology. 2013;269(2):603–11. https://doi.org/10.1148/radiol.13130150.

    Article  PubMed  Google Scholar 

  134. Rietz C, Flies DB, Hirano F, Tamura H, Dong H, Lau JS, Kaneko K, Ichikawa M, Wang S, Zhu G, Tamada K. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96. https://doi.org/10.1158/0008-5472.CAN-21-2926.

    Article  PubMed  Google Scholar 

  135. Sui CJ, Wang DF, Tang J, Lu XY, Luo GJ, Zhao Q, Lian QY, Jeong S, Lin XM, Zhu YJ, Zheng B. Targeted sequencing reveals the mutational landscape responsible for sorafenib therapy in advanced hepatocellular carcinoma. Theranostics. 2020;10(12):5384. https://doi.org/10.7150/thno.41616.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Sowa Y, Sakai T. Development of novel epigenetic molecular-targeting agents Nihon rinsho. Jpn J Clin Med. 2015;73(8):1263–7. https://doi.org/10.3727/096504016X14514194509664.

    Article  Google Scholar 

  137. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51(5):1820–32. https://doi.org/10.1002/hep.23594.

    Article  PubMed  Google Scholar 

  138. Sanyal AJ, Ganger D, Wong F, Lake JR, O’Leary JG, Jamil K, Frederick RT, Boyer TD, Pappas SC, Sigal SH, Munoz SJ. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150(7):1579–89. https://doi.org/10.1053/j.gastro.2016.02.026.

    Article  CAS  PubMed  Google Scholar 

  139. Shi B, Abrams M, Sepp-Lorenzino L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J Histochem Cytochem. 2013;61(12):901–9. https://doi.org/10.1369/0022155413503662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62(4–5):560–75. https://doi.org/10.1016/j.addr.2009.11.024.

    Article  CAS  PubMed  Google Scholar 

  141. Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology. 2007;46(6):1759–68. https://doi.org/10.1002/hep.21896.

    Article  CAS  PubMed  Google Scholar 

  142. Song J, Zhao W, Lu C, Shao X. LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK–Mfn2 signaling pathway. Cancer Cell Int. 2019. https://doi.org/10.1186/s12935-019-0778-1.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Schultheis B, Brendel E, Richly H, Adamietz IA, Grubert M, Ludwig M, Kupsch P, Hilger RA, Christensen O, Strumberg D. Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. Eur J Cancer. 2009;45(4):579–87. https://doi.org/10.1016/j.ejca.2008.10.039.

    Article  CAS  PubMed  Google Scholar 

  144. Saraswathy M, Gong S. Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater Today. 2014;17(6):298–306. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article  CAS  Google Scholar 

  145. Sanchez F, Sobolev K. Nanotechnology in concrete—a review. Constr Build Mater. 2010;24(11):2060–71. https://doi.org/10.1016/j.conbuildmat.2010.03.014.

    Article  Google Scholar 

  146. Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J Pharm Sci. 2019;108(10):3382–95. https://doi.org/10.1016/j.xphs.2019.06.003.

    Article  CAS  PubMed  Google Scholar 

  147. Singh A, Neupane YR, Panda BP, Kohli K. Lipid based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J Microencapsul. 2017;34(4):416–29. https://doi.org/10.1080/02652048.2017.

    Article  CAS  PubMed  Google Scholar 

  148. Singh A, Najmi AK, Shafi S, Upadhyay T, Kohli K, Pottoo FH. Insights into nanotherapeutic strategies as an impending approach to liver cancer treatment. Curr Top Med Chem. 2020;20(20):1839–54. https://doi.org/10.2174/1568026620666200624161801.

    Article  PubMed  Google Scholar 

  149. Tang H, Chen Q, Liu W, Zhao X, Li Y, Liu X, Yang X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomed. 2015;10:257. https://doi.org/10.2147/IJN.S73322.

    Article  CAS  Google Scholar 

  150. Tavares AJ, Poon W, Zhang YN, McGilvray ID, Chan WC. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48. https://doi.org/10.1016/j.jconrel.2016.01.0200168-3659.

    Article  PubMed  Google Scholar 

  151. Uchida D, Nouso K, Miyahara K, Kuwaki K, Omata M, Kudo M, Izumi N, Ichida T, Ku Y, Kokudo N, Sakamoto M. Effect of hepatic arterial infusion chemotherapy of 5-fluorouracil and cisplatin for advanced hepatocellular carcinoma in the Nationwide Survey of Primary Liver Cancer in Japan. Br J Cancer. 2013;109(7):1904–7. https://doi.org/10.1038/bjc.2013.542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Villanueva A, Newell P, Friedman SL, Koike K, Llovet JM. Experimental models of hepatocellular carcinoma. J Hepatol. 2008;48(5):858–79. https://doi.org/10.1016/j.jhep.2008.01.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Can Res. 1989;49(23):6449–65. https://doi.org/10.1007/978-1-4684-8181-5_103.

    Article  CAS  Google Scholar 

  154. Voutila J, Huang KW, Cutilas P, Andrikakou P, Jarvis S, Dorman S, Ciriello S, Reebye V, Lin V, Saetrom P, Mintz PJ. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene. 2018;37(24):3216–28. https://doi.org/10.1038/s41388-018-0126-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42(12):742. https://doi.org/10.2174/1872211312666180105114644.

    Article  CAS  Google Scholar 

  156. Vecchione A, Zheng J, Chen MH, Xu R, Lin SM, Park SY, Tak WY, Wang Y, Wong S, Peng CY, Chiou YY. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions RFA and lyso-thermosensitive liposomal doxorubicin in HCC. Clin Cancer Res. 2018;24(1):73–83. https://doi.org/10.1158/1078-0432.CCR-16-2433.

    Article  CAS  PubMed  Google Scholar 

  157. Wang HT, Xia M. A meta-analysis of efficacy and safety of sorafenib versus other targeted agents for metastatic renal cell carcinoma. Medicine. 2019. https://doi.org/10.1007/s40257-021-00626-3.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Weng DS, Zhao JJ, Pan K, Jiang SS, Pan QZ, Wang QJ, Zhang XF, Lv L, Tang Y, Li YQ. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cells. 2015;33(2):354–66. https://doi.org/10.1002/stem.1850.

    Article  CAS  PubMed  Google Scholar 

  159. Wisse E, Charels K, De Zanger RB, Van Der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology. 1985;5(4):683–92. https://doi.org/10.1002/hep.1840050427.

    Article  CAS  PubMed  Google Scholar 

  160. Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648. https://doi.org/10.4254/wjh.v7.i26.2648.

    Article  PubMed Central  PubMed  Google Scholar 

  161. Wang B, Duan CY, Luo LJ, Zhang LP, He NN, Abulimiti P, Lin Y. The inhibition role of miR-22 in hepatocellular carcinoma cell migration and invasion via targeting CD147. Cancer Cell Int. 2017;17:1–9. https://doi.org/10.1186/s12935-016-0380-8.

    Article  CAS  Google Scholar 

  162. Wu G, Zhou G, Hebbard L, Latchoumanin O, Han S, Huo X, George J, Qiao L. Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: implications for tumorigenesis, disease progression, and liver cancer stem cells. Mol Cancer. 2017;16(1):1–10. https://doi.org/10.1186/s12943-017-0734-4.

    Article  CAS  Google Scholar 

  163. Xia Q, Li L, Zhao L. Silica nanoparticle based dual responsive nanoprodrug system for liver cancer therapy. Exp Ther Med. 2017;14(3):2071–7. https://doi.org/10.3892/etm.2017.4768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Xu L, Li J, Hu M, An S, Zhou X, Wang Y, Tang Y, Liu R, Huang L. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat Commun. 2019;10(1):2993. https://doi.org/10.1038/s41467-019-10893-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Ye L, Ren M, Ren S, Hao X, Ren Z, Xu K, Li J. Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition. J Tradit Chin Med. 2014;34(3):309–16. https://doi.org/10.1016/j.molmed.2021.06.014.

    Article  CAS  PubMed  Google Scholar 

  166. Yadav KS, Mishra N, Yadav NP, Sinha P, Rai VK, Jain S, Arora S. Efficient hepatic delivery of drugs: novel strategies and their significance. BioMed Res Int. 2013. https://doi.org/10.1155/2013/382184.

    Article  PubMed Central  PubMed  Google Scholar 

  167. Yamato I, Sho M, Gao Q, Qiu SJ, Wang XY, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9. https://doi.org/10.1158/1078-0432.CCR-08-1608.

    Article  CAS  PubMed  Google Scholar 

  168. Yadava SS, Yadav N. Densities, viscosities and ultrasound velocities for binary mixtures of isopropylethanoate and non-polar hydrocarbon solvents. J Mol Liq. 2010;157(1):6–12. https://doi.org/10.1016/j.molliq.2010.07.010.

    Article  CAS  Google Scholar 

  169. Zou H, Yuan K, Miao XY, Wen Y, Xiong L, Liu KJ. Combining albumin-bilirubin score with future liver remnant predicts post-hepatectomy liver failure in HBV-associated HCC patients. Liver Int. 2018;38(3):494–502. https://doi.org/10.1111/liv.13514.

    Article  CAS  PubMed  Google Scholar 

  170. Zak JK, Krukiewicz K. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C. 2016;62:927–42. https://doi.org/10.3390/ijms23179526.

    Article  CAS  Google Scholar 

  171. Zheng J, Zhou T, Zhou Y, Li Y, Li S, Li HB. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016;8(3):156. https://doi.org/10.3390/nu8030156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Zapotoczny B, Kus E, Szafranska K, Owczarczyk K, Chlopicki S, Szymonski M. Atomic force microscopy reveals the dynamic morphology of fenestrations in live liver sinusoidal endothelial cells. Sci Rep. 2017;7(1):7994. https://doi.org/10.1038/s41598-017-08555-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Zoubek ME, Trautwein C, Strnad P. Reversal of liver fibrosis: from fiction to reality. Best Pract Res Clin Gastroenterol. 2017;31(2):129–41. https://doi.org/10.1177/1747493018778713.

    Article  PubMed  Google Scholar 

  174. Zhu AX. Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist. 2006;11(7):790–800. https://doi.org/10.1634/theoncologist.11-7-790.

    Article  CAS  PubMed  Google Scholar 

  175. Zheng B, Zhu YJ, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 2017;38(5):614–22. https://doi.org/10.1038/aps.2017.5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to library of Galgotias University for providing the material and support to us.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Yadav.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest. We also declare that there are no conflicts of interest for the same.

Ethical approval

There are no human subjects in this article and informed consent is not applicable. Do not need any ethical approvals or informed consent.

Informed consent

We affirm that all the authors have seen, prepared, and agreed to the submission of the paper and their inclusion of name(s) as co-author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, Yadav, S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 40, 239 (2023). https://doi.org/10.1007/s12032-023-02104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02104-8

Keywords

Navigation