Skip to main content

Advertisement

Log in

Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal plasticity (EMP) is a process in which epithelial cells lose their characteristics and acquire mesenchymal properties, leading to increased motility and invasiveness, which are key factors in cancer metastasis. Targeting EMP has emerged as a promising therapeutic approach to combat cancer metastasis. Various strategies have been developed to target EMP, including inhibition of key signaling pathways, such as TGF-β, Wnt/β-catenin, and Notch, that regulate EMP, as well as targeting specific transcription factors, such as Snail, Slug, and Twist, that promote EMP. Additionally, targeting the tumor microenvironment, which plays a critical role in promoting EMP, has also shown promise. Several preclinical and clinical studies have demonstrated the efficacy of EMP-targeting therapies in inhibiting cancer metastasis. However, further research is needed to optimize these strategies and improve their clinical efficacy. Overall, therapeutic targeting of EMP represents a promising approach for the development of novel cancer therapies that can effectively inhibit metastasis, a major cause of cancer-related mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhatia S, Wang P, Toh A, Thompson EW. New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Front Mol Biosci. 2020;7(71):1–18. https://doi.org/10.3389/fmolb.2020.00071.

    Article  CAS  Google Scholar 

  2. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial–mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. Journal of Cell Physiology. 2019;234:14535–55. https://doi.org/10.1002/jcp.28160.

    Article  CAS  Google Scholar 

  3. Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52. https://doi.org/10.1038/s41580-020-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manfioletti G, Fedele M. Epithelial-Mesenchymal Transition (EMT) 2021. Int J Mol Sci. 2022;23:5848. https://doi.org/10.3390/ijms23105848.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Simeone P, Trerotola M, Franck J, Tristan C, Marchisio M, Fournier I, Salzet M, Maffia M, Vergara D. The multiverse nature of epithelial to mesenchymal transition. Semin Cancer Biol. 2018;58:1–10. https://doi.org/10.1016/j.semcancer.2018.11.004.

    Article  PubMed  Google Scholar 

  6. Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting transcription factors for cancer treatment. Molecules. 2018;23(6):1479. https://doi.org/10.3390/molecules23061479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deshmukh S, Saini S. Phenotypic heterogeneity in tumor progression, and its possible role in the onset of cancer. Front Genet. 2020. https://doi.org/10.3389/fgene.2020.604528.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garg M. Epithelial plasticity and metastatic cascade. Expert Opin Ther Targets. 2018;22(1):5–7. https://doi.org/10.1080/14728222.2018.1407312.

    Article  PubMed  Google Scholar 

  9. Liao TT, Yang MH. Hybrid epithelial/mesenchymal state in cancer metastasis: clinical significance and regulatory mechanisms. Cells. 2020;9(3):623. https://doi.org/10.3390/cells9030623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cook DP, Wrana LJ. A specialist-generalist framework for epithelial-mesenchymal plasticity in cancer. Trends Cancer. 2022;8(5):358–68. https://doi.org/10.1016/j.trecan.2022.01.014.

    Article  CAS  PubMed  Google Scholar 

  11. Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J, Hess C, Christofori G. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 2019;35:17-32. e6. https://doi.org/10.1016/j.ccell.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  12. Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, Weinberg RA. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Can Res. 2017;77(15):3982–9. https://doi.org/10.1158/0008-5472.can-16-3292.

    Article  CAS  Google Scholar 

  13. Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11(7):824–46. https://doi.org/10.1002/1878-0261.12093.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Debnath P, Huirem RS, Dutta P, Palchaudhuri S. Epithelial–mesenchymal transition and its transcription factors. Biosci Rep. 2022;42(1):BSR20211754. https://doi.org/10.1042/BSR20211754.

    Article  CAS  PubMed  Google Scholar 

  15. Veloso ES, Gonçalves INN, Silveira TL, Espirito Santo JT, Figueiredo LV, Varaschin MS, Cassali GD, Del Puerto HL, Ferreira E. ZEB and snail expression indicates epithelial-mesenchymal transition in canine melanoma. Res Vet Sci. 2020;131:7–14. https://doi.org/10.1016/j.rvsc.2020.04.007.

    Article  CAS  PubMed  Google Scholar 

  16. Migault M, Sapkota S, Bracken CP. Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci. 2022;79:182. https://doi.org/10.1007/s00018-022-04199-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer. Can Res. 2018;78:30–5. https://doi.org/10.1158/0008-5472.can-17-2476.

    Article  CAS  Google Scholar 

  18. Migault M, Sapkota S, Bracken CP. Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci. 2022. https://doi.org/10.1007/s00018-022-04199-0.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15(1):129. https://doi.org/10.1186/s13045-022-01347-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pradella D, Naro C, Sette C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 2017. https://doi.org/10.1186/s12943-016-0579-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26. https://doi.org/10.1016/j.tcb.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  22. Razali RA, Lokanathan Y, Yazid MD, Ansari AS, Saim AB, Hj Idrus RB. Modulation of epithelial to mesenchymal transition signaling pathways by Olea europaea and its active compounds. Int J Mol Sci. 2019;20:3492. https://doi.org/10.3390/ijms20143492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lacouture ME, Morris JC, Lawrence DP, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Berzofsky JA, Hsu FJ, Guitart J. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor beta by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol Immunother. 2015;64:437–46. https://doi.org/10.1007/s00262-015-1653-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao Y, Baker D, ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J M S. 2019;20:2767. https://doi.org/10.3390/ijms20112767.

    Article  CAS  Google Scholar 

  25. Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66. https://doi.org/10.1016/j.ceb.2014.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. David CJ, Massague J. Contextual determinants of TGF-β action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19:419–35. https://doi.org/10.1038/s41580-018-0007-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK, Diehl JA, Howe PH. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol. 2017;19(9):1105–15. https://doi.org/10.1038/ncb3595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Zhang L. Members of the microRNA-200 family are promising therapeutic targets in cancer. Exp Ther Med. 2017;14(1):10–7. https://doi.org/10.3892/etm.2017.4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao T, Yang M. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol. 2017;11(7):792–804. https://doi.org/10.1002/1878-0261.12096.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res. 2018;7:1488. https://doi.org/10.12688/f1000research.15782.1.

    Article  CAS  Google Scholar 

  31. Li C-W, Xia W, Huo L, Lim S-O, Wu Y, Hsu JL, Chao C-H, Yamaguchi H, Yang N-K, Ding Q, Wang Y, Lai Y-J, LaBaff AM, Wu T-J, Lin B-R, Yang M-H, Hortobagyi GN, Hung M-C. Epithelial-mesenchymal transition induced by TNF- requires NF- B-mediated transcriptional upregulation of Twist1. Can Res. 2012;72(5):1290–300. https://doi.org/10.1158/0008-5472.can-11-3123.

    Article  CAS  Google Scholar 

  32. Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene. 2008;27:5075–80. https://doi.org/10.1038/onc.2008.140.

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, De Geyter C, Jia Z, Peng Y, Zhang H. HECTD1 regulates the expression of SNAIL: implications for epithelial-mesenchymal transition. Int J Oncol. 2020;56(5):1186–98. https://doi.org/10.3892/ijo.2020.5002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ, Rosenthal DT, Indig FE, Jiang Y, Nickoloff BJ, Taub DD, Trent JM, Moon RT, Bittner M, Weeraratna AT. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007;282:17259–71. https://doi.org/10.1074/jbc.M700075200.

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Ruan B, You N, Huang Q, Liu W, Dang Z, Xu W, Zhou T, Ji R, Cao Y, Li X, Wang D, Tao K, Dou K. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the beta-catenin pathway in hepatic oval cells. PLoS ONE. 2013;8:e79409. https://doi.org/10.1371/journal.pone.0079409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D, Qian C. MiR-23a promotes TGF-beta1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/betacatenin signaling. Oncotarget. 2017;8:69538–50. https://doi.org/10.18632/oncotarget.18422.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Song Y, Li Z, Liu X, Wang R, Li L, Zhang Q. The Wnt/β-catenin and PI3K/Akt signaling pathways promote EMT in gastric cancer by epigenetic regulation via H3 lysine 27 acetylation. Tumor Biol. 2017. https://doi.org/10.1177/1010428317712617.

    Article  Google Scholar 

  38. Zhang JQ, Chen S, Gu JN, Zhu Y, Zhan Q, Cheng DF, Chen H, Deng XX, Shen BY, Peng CH. MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/betacatenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J Cell Biochem. 2018;119:1027–40. https://doi.org/10.1002/jcb.26270.

    Article  CAS  PubMed  Google Scholar 

  39. Natsuizaka M, Whelan KA, Kagawa S, Koji T, Veronique G, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun. 2017;8:1758. https://doi.org/10.1038/s41467-017-01500-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharif A, Shaji A, Chammaa M, Pawlik E, Fernandez-Valdivia R. Notch transduction in non-small cell lung cancer. Int J Mol Sci. 2020;21:5691. https://doi.org/10.3390/ijms21165691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diaz VM, de Herreros AG. F-box proteins: keeping the epithelial-to- mesenchymal transition (EMT) in check. Semin Cancer Biol. 2016;36:71–9. https://doi.org/10.1016/j.semcancer.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  42. Bera A, Lewis SM. Regulation of epithelial-to-mesenchymal transition by alternative translation initiation mechanisms and its implications for cancer metastasis. Int J Mol Sci. 2020;21:4075. https://doi.org/10.3390/ijms21114075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6):10077. https://doi.org/10.1016/j.tranon.2020.100773.

    Article  Google Scholar 

  44. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26. https://doi.org/10.1186/s12943-019-0954-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee YR, Pandolfi PP. PTEN mouse models of cancer initiation and progression. Cold Spring Harb Perspect Med. 2020;10(2):a037283. https://doi.org/10.1101/cshperspect.a037283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen YH. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7(1):1. https://doi.org/10.3390/jcm7010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28. https://doi.org/10.1038/s41392-020-0134-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liang L, Kaufmann AM. The significance of cancer stem cells and epithelial-mesenchymal transition in metastasis and anti-cancer therapy. Int J Mol Sci. 2023;24(3):2555. https://doi.org/10.3390/ijms24032555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei Lu, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49(3):361–74. https://doi.org/10.1016/j.devcel.2019.04.010.

    Article  CAS  Google Scholar 

  50. Zhong W, Sun T. Editorial: epithelial-mesenchymal transition (EMT) as a therapeutic target in cancer. Front Oncol. 2023;13:1121416. https://doi.org/10.3389/fonc.2023.1121416.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Que Z, Tian J. New strategy for antimetastatic treatment of lung cancer: a hypothesis based on circulating tumour cells. Cancer Cell Int. 2022;22:356. https://doi.org/10.1186/s12935-022-02782-w.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Genenger B, Perry JR, Ashford B, Ranson MA. A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review). Discov Oncol. 2022;13:42. https://doi.org/10.1007/s12672-022-00510-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in cancer: root causes and strategies to uproot them. Int J Mol Sci. 2021;22(17):9451. https://doi.org/10.3390/ijms22179451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 2019;1141:549–80. https://doi.org/10.1007/978-981-13-7647-4_12.

    Article  CAS  PubMed  Google Scholar 

  55. Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-Mesenchymal Transition (EMT) as a therapeutic target. Cells Tissues Organs. 2022;211(2):157–82. https://doi.org/10.1159/000512218.

    Article  CAS  PubMed  Google Scholar 

  56. Azadi S, Torkashvand E, Mohammadi E, Tafazzoli-Shadpour M. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling. Life Sci. 2023;320:121545. https://doi.org/10.1016/j.lfs.2023.121545.

    Article  CAS  PubMed  Google Scholar 

  57. Malek R, Wang H, Taparra K, Tran PT. Therapeutic targeting of epithelial plasticity programs: focus on the epithelial-mesenchymal transition. Cells Tissues Organs. 2017;203(2):114–27. https://doi.org/10.1159/000447238.

    Article  CAS  PubMed  Google Scholar 

  58. Yingling JM, McMillen WT, Yan L, Huang H, Sawyer JS, Graff J, Clawson DK, Britt KS, Anderson BD, Beight DW, Desaiah D, Lahn MM, Benhadji KA, Lallena MJ, Holmgaard RB, Xu X, Zhang F, Manro JR, Iversen PW, Iyer CV, Brekken RA, Kalos MD, Driscoll KE. Preclinical assessment of galunisertib (LY2157299) monohydrate, a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget. 2017;9(6):6659–77. https://doi.org/10.18632/oncotarget.23795.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020;487:10–20. https://doi.org/10.1016/j.canlet.2020.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamazaki T, Gunderson AJ, Gilchrist M, Whiteford M, Kiely MX, Hayman A, O’Brien D, Ahmad R, Manchio JV, Fox N, McCarty K, Phillips M, Brosnan E, Vaccaro G, Li R, Simon M, Bernstein E, McCormick M, Yamasaki L, Wu Y, Drokin A, Carnahan T, To Y, Redmond WL, Lee B, Louie J, Hansen E, Solhjem MC, Cramer J, Urba WJ, Gough MJ, Crittenden MR, Young KH. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 2022;23(9):1189–200. https://doi.org/10.1016/S1470-2045(22)00446-6.

    Article  CAS  PubMed  Google Scholar 

  61. Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The role of TGF-β signaling pathways in cancer and its potential as a therapeutic target. Evid Based Complement Alternat Med. 2021;2021:6675208. https://doi.org/10.1155/2021/6675208.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xu J, Higgins MJ, Tolaney SM, Come SE, Smith MR, Fornier M, Mahmood U, Baselga J, Yeap BY, Chabner BA, Isakoff SJ. A phase II trial of Cabozantinib in hormone receptor-positive breast cancer with bone metastases. Oncologist. 2020;25(8):652–60. https://doi.org/10.1634/theoncologist.2020-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. https://doi.org/10.3390/cells8101118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83. https://doi.org/10.1016/j.critrevonc.2019.02.010.

    Article  PubMed  Google Scholar 

  65. Sisto M, Ribatti D, Lisi S. ADAM 17 and epithelial-to-mesenchymal transition: the evolving story and its link to fibrosis and cancer. J Clin Med. 2021;210(15):3373. https://doi.org/10.3390/jcm10153373.

    Article  CAS  Google Scholar 

  66. Smith CEP, Prasad V. Targeted cancer therapies. Am Fam Physician. 2021;103(3):155–63.

    PubMed  Google Scholar 

  67. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62. https://doi.org/10.1038/s41392-019-0095-0.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci. 2021;22(14):7350. https://doi.org/10.3390/ijms22147350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castro-Muñoz LJ, Ulloa EV, Sahlgren C, Lizano M, De La Cruz-Hernández E, Contreras-Paredes A. Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep. 2023;49(3):59. https://doi.org/10.3892/or.2023.8496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu Y, Zhu Q. Histone modifications represent a key epigenetic feature of epithelial-to-mesenchyme transition in pancreatic cancer. Int J Mol Sci. 2023;24(5):4820. https://doi.org/10.3390/ijms24054820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su JM, Kilburn LB, Mansur DB, Krailo M, Buxton A, Adekunle A, Gajjar A, Adamson PC, Weigel B, Fox E, Blaney SM, Fouladi M. Phase I/II trial of vorinostat and radiation and maintenance vorinostat in children with diffuse intrinsic pontine glioma: A Children’s Oncology Group report. Neuro Oncol. 2022;24(4):655–64. https://doi.org/10.1093/neuonc/noab188.

    Article  CAS  PubMed  Google Scholar 

  72. Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: emerging indications and novel molecules. Br Pharmacol Soc J. 2021;87(12):4577–97. https://doi.org/10.1111/bcp.14889.

    Article  Google Scholar 

  73. Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Sig Transduct Target Ther. 2023;8:69. https://doi.org/10.1038/s41392-023-01341-7.

    Article  CAS  Google Scholar 

  74. Bai F, Wang C, Liu X, Hollern D, Liu S, Fan C, Liu C, Ren S, Herschkowitz JI, Zhu WG, Pei XH. Loss of function of BRCA1 promotes EMT in mammary tumors through activation of TGFβR2 signaling pathway. Cell Death Dis. 2022;13(3):195. https://doi.org/10.1038/s41419-022-04646-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jang J, Song J, Lee H, Sim I, Kwon YB, Jho E, Yoon Y. LGK974 suppresses lipopolysaccharide-induced endotoxemia in mice by modulating the crosstalk between the Wnt/β-catenin and NF-κB pathways. Exp Mol Med. 2021;53:407–21. https://doi.org/10.1038/s12276-021-00577-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gampala S, Yang JY. Hedgehog pathway inhibitors against tumor microenvironment. Cells. 2021;10(11):3135. https://doi.org/10.3390/cells10113135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the hedgehog pathway in rhabdomyosarcoma. Cancers. 2023;15(3):727. https://doi.org/10.3390/cancers15030727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. https://doi.org/10.1186/s11671-021-03628-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sen P, Saha M, Ghosh SS. Nanoparticle mediated alteration of EMT dynamics: an approach to modulate cancer therapeutics. Mat Adv. 2020. https://doi.org/10.1039/D0MA00455C.

    Article  Google Scholar 

  80. Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol. 2023;14:1111991. https://doi.org/10.3389/fphar.2023.1111991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trend Cancer. 2020;6(11):942–50. https://doi.org/10.1016/j.trecan.2020.06.005.

    Article  CAS  Google Scholar 

  82. Sharma V, Gupta SK, Verma M. Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs. Cancer Chemother Pharmacol. 2019;84(6):1157–66. https://doi.org/10.1007/s00280-019-03936-w.

    Article  CAS  PubMed  Google Scholar 

  83. Sekhar KR, Hanna DN, Cyr S, Baechle JJ, Kuravi S, Balusu R, Rathmell K, Baregamian N. Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci Rep. 2022;12(1):19396. https://doi.org/10.1038/s41598-022-23906-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T, Priebe W. 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21(1):234. https://doi.org/10.3390/ijms21010234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y. Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol. 2020;10:589508. https://doi.org/10.3389/fonc.2020.589508.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Modesto I, Inácio V, Van de Peer Y, et al. MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode. Sci Rep. 2022;12:5160. https://doi.org/10.1038/s41598-022-09163-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther. 2017;10:3435–51. https://doi.org/10.2147/OTT.S139546.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Diaz-Riascos ZV, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L, Cordelier P, Capellá G. Expression and role of MicroRNAs from the miR-200 family in the tumor formation and metastatic propensity of pancreatic cancer. Mol Ther Nucleic Acids. 2019;17:491–503. https://doi.org/10.1016/j.omtn.2019.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gupta S, Panda PK, Hashimoto RF, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep. 2022;12:4911. https://doi.org/10.1038/s41598-022-08900-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fu Z, Wang L, Li S, Chen F, Au-Yeung KK, Shi C. MicroRNA as an important target for anticancer drug development. Front Pharmacol. 2021;12:736323. https://doi.org/10.3389/fphar.2021.736323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers. 2021;13:2680. https://doi.org/10.3390/cancers13112680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yin Q, Zheng M, Luo Q, Jiang D, Zhang H, Chen C. YB-1 as an oncoprotein: functions, regulation, post-translational modifications, and targeted therapy. Cells. 2022;11:1217. https://doi.org/10.3390/cells11071217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kong F, Ma L, Wang X, You H, Zheng K, Tang R. Regulation of epithelial-mesenchymal transition by protein lysine acetylation. Cell Commun Signaling. 2022;20:57. https://doi.org/10.1186/s12964-022-00870-y.

    Article  CAS  Google Scholar 

  94. Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci. 2020;21(11):3904. https://doi.org/10.3390/ijms21113904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McCubrey JA, Fitzgerald TL, Yang LV, Lertpiriyapong K, Steelman LS, Abrams SL, Montalto G, Cervello M, Neri LM, Cocco L, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Nicoletti F, Falzone L, Candido S, Libra M. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget. 2017;8(8):14221–50. https://doi.org/10.18632/oncotarget.13991.

    Article  PubMed  Google Scholar 

  96. Pires BR, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S, Abdelhay ES. NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE. 2017;12(1):e0169622. https://doi.org/10.1371/journal.pone.0169622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no involvement of funding in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhansu Sekhar Nishank.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.B., Nishank, S.S. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med Oncol 40, 190 (2023). https://doi.org/10.1007/s12032-023-02049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02049-y

Keywords

Navigation