Skip to main content

Advertisement

Log in

The role of PIP5K1A in cancer development and progression

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Malignant tumors are formed via a pathological process of uncontrolled cell division that seriously endangers human physical and mental health. The PI3K/AKT signaling pathway plays an important role in the occurrence and development of various cancers. As a lipid kinase, PIP5K1A acts on the upstream of the PI3K/AKT signaling pathway and has a variety of biological functions, including cell differentiation, cell migration, and sperm development. An increasing number of studies have shown that the overexpression of PIP5K1A promotes the growth, invasion, and migration of cancer cells, and the inhibition of PIP5K1A can effectively hinder tumor progression. These findings imply that PIP5K1A are potential markers and targets for cancers. The aim of this study was to systemically review the structure and function of PIP5K1A, the relationship between PIP5K1A and tumors and the potential therapeutic value of PIP5K1A inhibitors in cancer. PIP5K1A affects the occurrence and progression of many tumors and will provide new strategies for cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci. 2009;122(21):3837–50.

    Article  Google Scholar 

  2. Semenas J, Hedblom A, Miftakhova RR, et al. The role of PI3K/AKT-related PIP5K1 and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci. 2014;111(35):E3689–98.

    Article  CAS  Google Scholar 

  3. Katja S, Samer H, Ángel A, et al. Development of an in vitro screening assay for PIP5K1α lipid kinase and identification of potent inhibitors. FEBS J. 2019. https://doi.org/10.1111/febs.15194.

    Article  Google Scholar 

  4. Atsushi K, Yuta I, Miho H, et al. Decrease in multidrug resistance-associated protein 2 activities by knockdown of phosphatidylinositol 4-phosphate 5-kinase in hepatocytes and cancer cells. J Pharm Pharm Sci. 2019;22(1):576.

    Google Scholar 

  5. Hasegawa H, Noguchi J, Yamashita M, et al. Phosphatidylinositol 4-phosphate 5-kinase is indispensable for mouse spermatogenesis. Biol Reprod. 2012. https://doi.org/10.1095/biolreprod.110.089896.

    Article  PubMed  Google Scholar 

  6. Per L, Sajid SKA, Julius S, et al. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer. Int J Cancer. 2020;146(6):1686.

    Article  Google Scholar 

  7. Sarwar M, Syed Khaja AS, Aleskandarany M, et al. The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor. Oncogene. 2018;38(3):375–89.

    Article  Google Scholar 

  8. Yamaguchi H, Yoshida S, Muroi E, et al. Phosphatidylinositol 4,5-bisphosphate and PIP5-kinase Iα are required for invadopodia formation in human breast cancer cells. Cancer Sci. 2010;101(7):1632–8.

    Article  CAS  Google Scholar 

  9. Tsai M-T, Katagiri N, Ohbayashi N, et al. Regulation of HGF-induced hepatocyte proliferation by the small GTPase Arf6 through the PIP2-producing enzyme PIP5K1A. Scientific Reports. 2017;7(1):10. https://doi.org/10.1038/s41598-017-09633-z.

    Article  CAS  Google Scholar 

  10. Drake JM, Huang J. PIP5K1α inhibition as a therapeutic strategy for prostate cancer. Proc Natl Acad Sci. 2014;111(35):12578–9.

    Article  CAS  Google Scholar 

  11. Loijens JC, et al. The phosphatidylinositol 4-phosphate 5-kinase family. Adv Enzyme Regul. 1996;36:115.

    Article  CAS  Google Scholar 

  12. Loijens CL, Anderson AR. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem. 1996;271(51):32937.

    Article  CAS  Google Scholar 

  13. Hu J, Yuan Q, Kang X, et al. Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nat Commun. 2015;6(1):10. https://doi.org/10.1038/ncomms9205.

    Article  CAS  Google Scholar 

  14. Muftuoglu Y, Xue Y, Gao X, et al. Mechanism of substrate specificity of phosphatidylinositol phosphate kinases. Proc Natl Acad Sci. 2016;113(31):8711–6.

    Article  CAS  Google Scholar 

  15. Amos S-BTA, Kalli AC, Shi J, et al. Membrane recognition and binding by the phosphatidylinositol phosphate kinase PIP5K1A: a multiscale simulation study. Structure. 2019;27(8):1336–46.

    Article  CAS  Google Scholar 

  16. East MP, et al. PIP5K1A: a potential target for cancers with KRAS or TP53 mutations. Nat Rev Drug Discov. 2020;19(7):436.

    Article  CAS  Google Scholar 

  17. Park SJ, Itoh T, Takenawa T. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J Biol Chem. 2001;276(7):4781–7.

    Article  CAS  Google Scholar 

  18. Chen X, Wan J, Yu B, et al. PIP5K1α promotes myogenic differentiation via AKT activation and calcium release. Stem Cell Res Therapy. 2018. https://doi.org/10.1186/s13287-018-0770-z.

    Article  Google Scholar 

  19. Xie Z, Chang SM, Pennypacker SD, et al. Phosphatidylinositol-4-phosphate 5-kinase 1α mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell. 2009;20(6):1695–704.

    Article  CAS  Google Scholar 

  20. Angel DPM, et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol. 2022;4(3):232.

    Google Scholar 

  21. van Hennik PB, Klooster JPT, Halstead JR, et al. The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity. J Biol Chem. 2003;278(40):39166–75.

    Article  Google Scholar 

  22. Chao W-T, Daquinag AC, Ashcroft F, et al. Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. J Cell Biol. 2010;190(2):247–62.

    Article  CAS  Google Scholar 

  23. Szymańska E, Korzeniowski M, Raynal P, et al. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling. Exp Cell Res. 2009;315(6):981–95.

    Article  Google Scholar 

  24. Yin HL, Lu CY, de Camilli P, et al. Essential and unique roles of PIP5K-γ and -α in Fcγ receptor-mediated phagocytosis. J Cell Biol. 2009;184(2):281–96.

    Article  Google Scholar 

  25. Kanaho Y, Suzuki A, Yonekawa H, et al. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I α. J Exp Med. 2005;201(6):859–70.

    Article  Google Scholar 

  26. Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942–6.

    Article  CAS  Google Scholar 

  27. Gonzales B, De Rocquigny H, Beziau A, et al. Type I phosphatidylinositol-4-phosphate 5-kinases α and γ play a key role in targeting HIV-1 Pr55Gag to the plasma membrane. J Virol. 2020. https://doi.org/10.1128/JVI.00189-20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yanfeng W, Xinsheng C, Lurong L, et al (2008) Loss of PIP5KIbeta demonstrates that PIP5KI isoform-specific PIP2 synthesis is required for IP3 formation. Proc Natl Acad Sci USA 105(37)

  29. Buccione R, Caldieri G, Ayala I. Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev. 2009;28(1–2):137–49.

    Article  Google Scholar 

  30. Weaver AM. Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metas. 2006;23(2):97–105.

    Article  Google Scholar 

  31. Choi S, Chen M, Cryns VL, et al. A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol. 2019;21(4):462–75.

    Article  CAS  Google Scholar 

  32. Flemming A. Lipid kinase PIP5K1α as a new target in prostate cancer. Nat Rev Drug Discov. 2014;13(10):723.

    Article  CAS  Google Scholar 

  33. Martuza S, Julius S, Regina M, et al. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells. Oncotarget. 2016;7(39):63065.

    Article  Google Scholar 

  34. Waugh MG. Amplification of chromosome 1q genes encoding the phosphoinositide signalling enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in breast cancer. J Cancer. 2014;5(9):790–6.

    Article  Google Scholar 

  35. Adhikari H, Counter CM. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat Commun. 2018;9(1):10. https://doi.org/10.1038/s41467-018-05692-6.

    Article  CAS  Google Scholar 

  36. Bassi CL, et al. Transcriptional changes in U343 MG-a glioblastoma cell line exposed to ionizing radiation. Hum Exp Toxicol. 2008;27(12):919.

    Article  CAS  Google Scholar 

  37. Tong C-W, Wang J-L, Jiang M-S, et al. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. Gene. 2013;515(1):62–70.

    Article  CAS  Google Scholar 

  38. Torre LA, Trabert B, Desantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.

    Article  Google Scholar 

  39. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304.

    PubMed  Google Scholar 

  40. Sun Y, Li X, Chen A, et al. circPIP5K1A serves as a competitive endogenous RNA contributing to ovarian cancer progression via regulation of miR-661/IGFBP5 signaling. J Cell Biochem. 2019;120(12):19406–14.

    Article  CAS  Google Scholar 

  41. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J Clin. 2020;70(1):7–30.

    Google Scholar 

  42. Kei M (2017) Systemic chemotherapy for metastatic colorectal cancer -Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2016 for treatment of colorectal cancer. Jpn J Gastro-enterology 114(7)

  43. Zhang Q, Zhang C, Ma J-X, et al. Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a. World J Gastroenterol. 2019;25(35):5300–9.

    Article  CAS  Google Scholar 

  44. Mao Y, Yang D, He J, et al. Epidemiology of lung cancer. Surg Oncol Clin N Am. 2016;25(3):439–45.

    Article  Google Scholar 

  45. Ettinger SE, et al. Non-small cell lung cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. JNCCN. 2017;15(4):504.

    PubMed  Google Scholar 

  46. Shaoyan Z, Xiaoli Z, Ting D, et al. Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep. 2018;8(1):10. https://doi.org/10.1038/s41598-018-21300-5.

    Article  CAS  Google Scholar 

  47. Feng N, Guo Z, Wu X, et al. Circ_PIP5K1A regulates cisplatin resistance and malignant progression in non-small cell lung cancer cells and xenograft murine model via depending on miR-493-5p/ROCK1 axis. Respir Res. 2021;22(1):248.

    Article  CAS  Google Scholar 

  48. Zheng K, Xie H, Wu W, et al. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 2021;21(1):27.

    Article  CAS  Google Scholar 

  49. Larsson R, Blanco N, Johansson M, et al. Synthesis of C-1 indol-3-yl substituted tetrahydroisoquinoline derivatives via a Pictet-Spengler approach. Tetrahedron Lett. 2012;53(37):4966–70.

    Article  CAS  Google Scholar 

  50. Martín-Acosta P, Haider S, Amesty Á, et al. A new family of densely functionalized fused-benzoquinones as potent human protein kinase CK2 inhibitors. Eur J Med Chem. 2018;144:410–23.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Scientific research innovation team of Precision Medicine of Gynecologic Oncology in the Affiliated Hospital of Jining Medical University for the generous funding.

Funding

This work was supported by the Medical Science and Technology Development Plans Foundation of Shandong Province (2017WS336), and Key R&D Program of Jining (2020YXNS026).

Author information

Authors and Affiliations

Authors

Contributions

MY and YW contributed to the literature review, conceptualized, and co‑wrote the manuscript.

Corresponding author

Correspondence to Yunfei Wang.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Wang, Y. The role of PIP5K1A in cancer development and progression. Med Oncol 39, 151 (2022). https://doi.org/10.1007/s12032-022-01753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01753-5

Keywords

Navigation