Skip to main content

Advertisement

Log in

Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Targeted therapy is a hallmark of cancer treatment that has changed the landscape of cancer management and enabled a personalized treatment approach. Nevertheless, the development of cancer resistance is a major challenge that is currently threatening the effective utilization of targeted therapies. The hepatocyte growth factor receptor, MET, is a receptor tyrosine kinase known for its oncogenic activity and tumorigenic potential. MET is a well-known driver of cancer resistance. A growing body of evidence revealed a major role of MET in mediating acquired resistance to several classes of targeted therapies. Deregulations of MET commonly associated with the development of cancer resistance include gene amplification, overexpression, autocrine activation, and crosstalk with other signaling pathways. Small-molecule tyrosine kinase inhibitors of MET are currently approved for the treatment of different solid cancers. This review summarizes the current evidence regarding MET-mediated cancer resistance toward targeted therapies. The molecular mechanisms associated with resistance are described along with findings from preclinical and clinical studies on using MET inhibitors to restore the anticancer activity of targeted therapies for the treatment of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

EGFR:

Epidermal growth factor receptor

FGFR:

Fibroblast growth factor receptor

GAB1:

GRB2-associated binding protein 1

GRB2:

Growth factor receptor-bound protein 2

HCC:

Hepatocellular carcinoma

HER2:

Human epidermal growth factor receptor 2

HGF:

Hepatocyte growth factor

IPT:

Immunoglobulin-like regions in plexins and transcription factors

mAb:

Monoclonal antibody

MET:

Hepatocyte growth factor receptor

mTOR:

Mammalian target of rapamycin

ORR:

Overall response rate

OS:

Overall survival

PARP:

Poly (ADP-ribose) polymerase

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol 3-kinase

PSI:

Plexin–semaphorin–integrin

RCC:

Renal cell carcinoma

RON:

Recepteur d’origine nantais

RTKs:

Receptor tyrosine kinases

S:

Serine

SEMA:

Semaphorin

STAT:

Signal transducer and activator of transcription

TKIs:

Tyrosine kinase inhibitors

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

Y:

Tyrosine

References

  1. Eder JP, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  CAS  PubMed  Google Scholar 

  2. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer. 2001;8(3):161–73.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cecchi F, Rabe DC, Bottaro DP. The hepatocyte growth factor receptor: Structure, function and pharmacological targeting in cancer. Curr Signal Transduct Ther. 2011;6(2):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin JC, et al. Intron-exon structure of the MET gene and cloning of an alternatively-spliced Met isoform reveals frequent exon-skipping of a single large internal exon. Oncogene. 1998;16(7):833–42.

    Article  CAS  PubMed  Google Scholar 

  6. Duh FM, et al. Gene structure of the human MET proto-oncogene. Oncogene. 1997;15(13):1583–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sadiq AA, Salgia R. Inhibition of MET receptor tyrosine kinase and its ligand hepatocyte growth factor. J Thorac Oncol. 2012;7(16 Suppl 5):S372–4.

    Article  PubMed  Google Scholar 

  8. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nair A, et al. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nat Med. 2018;24(4):505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mulcahy EQX, Colomicronn RR, Abounader R. HGF/MET signaling in malignant brain tumors. Int J Mol Sci. 2020;21(20):7546.

    Article  CAS  PubMed Central  Google Scholar 

  11. Zhang Y, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baldanzi G, Graziani A. Physiological signaling and structure of the HGF receptor MET. Biomedicines. 2014;3(1):1–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Noriega-Guerra H, Freitas VM. Extracellular matrix influencing HGF/c-MET signaling pathway: impact on cancer progression. Int J Mol Sci. 2018;19(11):3300.

    Article  PubMed Central  Google Scholar 

  14. Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol. 2013;5(8):a009043.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Viticchie G, Muller PAJ. c-Met and other cell surface molecules: interaction activation and functional consequences. Biomedicines. 2015;3(1):46–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, et al. HGF/c-MET: A Promising therapeutic target in the digestive system cancers. Int J Mol Sci. 2018;19(11):3295.

    Article  PubMed Central  Google Scholar 

  17. Garajova I, et al. c-Met as a target for personalized therapy. Transl Oncogenomics. 2015;7(Suppl 1):13–31.

    PubMed  PubMed Central  Google Scholar 

  18. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pal K, et al. Structural basis of TPR-mediated oligomerization and activation of oncogenic fusion kinases. Structure. 2017;25(6):867-877e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tovar EA, Graveel CR. MET in human cancer: germline and somatic mutations. Ann Transl Med. 2017;5(10):205.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sattler M, et al. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol. 2011;3(4):171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McGee SF, et al. Biological properties of ligand-dependent activation of the MET receptor kinase in acute myeloid leukemia. Leukemia. 2015;29(5):1218–21.

    Article  CAS  PubMed  Google Scholar 

  23. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    Article  CAS  PubMed  Google Scholar 

  25. Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8.

    Article  CAS  PubMed  Google Scholar 

  26. Housman G, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–92.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mo HN, Liu P. Targeting MET in cancer therapy. Chronic Dis Transl Med. 2017;3(3):148–53.

    PubMed  PubMed Central  Google Scholar 

  28. Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–55.

    Article  CAS  PubMed  Google Scholar 

  29. Corso S, Giordano S. Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov. 2013;3(9):978–92.

    Article  CAS  PubMed  Google Scholar 

  30. Santoni-Rugiu E, et al. Intrinsic resistance to EGFR-tyrosine kinase inhibitors in egfr-mutant non-small cell lung cancer: differences and similarities with acquired resistance. Cancers (Basel). 2019;11(7):923.

    Article  CAS  PubMed Central  Google Scholar 

  31. Torigoe H, et al. Therapeutic strategies for afatinib-resistant lung cancer harboring HER2 alterations. Cancer Sci. 2018;109(5):1493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshioka T, et al. Acquired resistance mechanisms to afatinib in HER2-amplified gastric cancer cells. Cancer Sci. 2019;110(8):2549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, et al. Clinical analysis by next-generation sequencing for NSCLC patients with MET amplification resistant to osimertinib. Lung Cancer. 2018;118:105–10.

    Article  PubMed  Google Scholar 

  34. Murtuza A, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res. 2019;79(4):689–98.

    Article  CAS  PubMed  Google Scholar 

  35. Planchard D, et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 2015;26(10):2073–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ma C, Wei S, Song Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. J Thorac Dis. 2011;3(1):10–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bardelli A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3(6):658–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pietrantonio F, et al. MET-driven resistance to dual EGFR and BRAF blockade may be overcome by switching from EGFR to MET inhibition in BRAF-mutated colorectal cancer. Cancer Discov. 2016;6(9):963–71.

    Article  CAS  PubMed  Google Scholar 

  39. Minuti G, et al. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer. 2012;107(5):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, et al. Synergistic effects of foretinib with HER-targeted agents in MET and HER1or HER2-coactivated tumor cells. Mol Cancer Ther. 2011;10(3):518–30.

    Article  CAS  PubMed  Google Scholar 

  41. Straussman R, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Virzi AR, et al. Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation. Proc Natl Acad Sci U S A. 2018;115(40):10058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SM, et al. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis. 2016;5(7):e241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Landi L, et al. MET overexpression and gene amplification in NSCLC: a clinical perspective. Lung Cancer (Auckl). 2013;4:15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gou LY, et al. The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7(32):51311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cascone T, et al. The HGF/c-MET pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non-small cell lung cancer. Clin Cancer Res. 2017;23(18):5489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Firtina Karagonlar Z, et al. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 2016;107(4):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiang H, et al. Onartuzumab (MetMAb): using nonclinical pharmacokinetic and concentration-effect data to support clinical development. Clin Cancer Res. 2013;19(18):5068–78.

    Article  CAS  PubMed  Google Scholar 

  50. Paulson AK, et al. MET and ERBB2 are coexpressed in ERBB2+ breast cancer and contribute to innate resistance. Mol Cancer Res. 2013;11(9):1112–21.

    Article  CAS  PubMed  Google Scholar 

  51. Shattuck DL, et al. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008;68(5):1471–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hiscox S, et al. Chronic exposure to fulvestrant promotes overexpression of the c-Met receptor in breast cancer cells: implications for tumour-stroma interactions. Endocr Relat Cancer. 2006;13(4):1085–99.

    Article  CAS  PubMed  Google Scholar 

  53. Yamaguchi H, et al. Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene. 2014;33(9):1073–81.

    Article  CAS  PubMed  Google Scholar 

  54. Ko B, et al. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med. 2017;5(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Al-U’datt DGF, Al-Husein BAA, Qasaimeh GR. A mini-review of c-Met as a potential therapeutic target in melanoma. Biomed Pharmacother. 2017;88:194–202.

    Article  CAS  PubMed  Google Scholar 

  56. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol. 2009;10(7):709–17.

    Article  CAS  PubMed  Google Scholar 

  57. Park J, et al. FOXO1 suppression is a determinant of acquired lapatinib-resistance in HER2-positive gastric cancer cells through MET upregulation. Cancer Res Treat. 2018;50(1):239–54.

    Article  CAS  PubMed  Google Scholar 

  58. Gimenez-Xavier P, et al. Deep analysis of acquired resistance to FGFR1 inhibitor identifies MET and AKT activation and an expansion of AKT1 mutant cells. Oncotarget. 2018;9(59):31549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mueller KL, et al. Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res. 2008;68(9):3314–22.

    Article  CAS  PubMed  Google Scholar 

  60. Mikhaylenko DS, et al. Case of hereditary papillary renal cell carcinoma type I in a patient with a germline MET mutation in Russia. Front Oncol. 2019;9:1566.

    Article  PubMed  Google Scholar 

  61. Liu S, et al. Functional consequence of the MET-T1010I polymorphism in breast cancer. Oncotarget. 2015;6(5):2604–14.

    Article  PubMed  Google Scholar 

  62. Krishnaswamy S, et al. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res. 2009;15(18):5714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reungwetwattana T, Ou SH. MET exon 14 deletion (METex14): finally, a frequent-enough actionable oncogenic driver mutation in non-small cell lung cancer to lead MET inhibitors out of “40 years of wilderness” and into a clear path of regulatory approval. Transl Lung Cancer Res. 2015;4(6):820–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosen LS, et al. A first-in-human phase I study of a bivalent MET antibody, emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin Cancer Res. 2017;23(8):1910–9.

    Article  CAS  PubMed  Google Scholar 

  65. Sakai D, et al. A non-randomized, open-label, single-arm, Phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer. Cancer Chemother Pharmacol. 2017;80(6):1197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahu A, et al. Crizotinib: A comprehensive review. South Asian J Cancer. 2013;2(2):91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dhillon S. Capmatinib: First approval. Drugs. 2020;80(11):1125–31.

    Article  CAS  PubMed  Google Scholar 

  68. Kazandjian D, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5-11.

    Article  PubMed  PubMed Central  Google Scholar 

  69. United States Food and Drug Administration. Drug approvals and database. Retreived from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-children-and-young-adults-relapsed-or-refractory-systemic-anaplastic-large, Accessed on Sept 29th, 2021.

  70. Elisei R, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leavitt J, Copur MS. FDA Approved Uses of Cabozantinib. Oncology (Williston Park). 2019;33(9):685004.

    Google Scholar 

  72. United States Food and Drug Administration. Drug approvals and database. Retreived from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-cabozantinib-advanced-renal-cell-carcinoma, Accessed on Sept 29th, 2021.

  73. Yang Y, et al. Sitravatinib, a tyrosine kinase inhibitor, inhibits the transport function of ABCG2 and restores sensitivity to chemotherapy-resistant cancer cells in vitro. Front Oncol. 2020;10:700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Logan TF. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr Oncol Rep. 2013;15(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  75. Du Z, et al. Preclinical evaluation of AMG 337, a highly selective small molecule MET inhibitor hepatocellular carcinoma. Mol Cancer Ther. 2016;15(6):1227–37.

    Article  CAS  PubMed  Google Scholar 

  76. Gavine PR, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol. 2015;9(1):323–33.

    Article  CAS  PubMed  Google Scholar 

  77. Pievsky D, Pyrsopoulos N. Profile of tivantinib and its potential in the treatment of hepatocellular carcinoma: the evidence to date. J Hepatocell Carcinoma. 2016;3:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xu W, et al. Overcoming Resistance to AC0010, a Third Generation of EGFR Inhibitor, by Targeting c-MET and BCL-2. Neoplasia. 2019;21(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  79. Nakagawa T, et al. Combined therapy with mutant-selective EGFR inhibitor and Met kinase inhibitor for overcoming erlotinib resistance in EGFR-mutant lung cancer. Mol Cancer Ther. 2012;11(10):2149–57.

    Article  CAS  PubMed  Google Scholar 

  80. Nanjo S, et al. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors. PLoS One. 2013;8(12):e84700.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Friese-Hamim M, et al. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models. Am J Cancer Res. 2017;7(4):962–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tong M, et al. SHR-A1403, a novel c-mesenchymal-epithelial transition factor (c-Met) antibody-drug conjugate, overcomes AZD9291 resistance in non-small cell lung cancer cells overexpressing c-Met. Cancer Sci. 2019;110(11):3584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stanley A, et al. Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep. 2017;7(1):3964.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dratkiewicz E, et al. Gefitinib or lapatinib with foretinib synergistically induce a cytotoxic effect in melanoma cell lines. Oncotarget. 2018;9(26):18254–68.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Steinway SN, et al. The EGFR/ErbB3 pathway acts as a compensatory survival mechanism upon c-Met inhibition in human c-Met+ hepatocellular carcinoma. PLoS One. 2015;10(5):e0128159.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ciamporcero E, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou L, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35(21):2687–97.

    Article  CAS  PubMed  Google Scholar 

  88. Jiang X, et al. Sorafenib and DE605, a novel c-Met inhibitor, synergistically suppress hepatocellular carcinoma. Oncotarget. 2015;6(14):12340–56.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Piao Y, et al. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro Oncol. 2016;18(9):1230–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Okuda T, et al. Efficacy of combination therapy with MET and VEGF inhibitors for MET-overexpressing glioblastoma. Anticancer Res. 2017;37(7):3871–6.

    CAS  PubMed  Google Scholar 

  91. Dong Q, et al. EGFR and c-MET cooperate to enhance Resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res. 2019;79(4):819–29.

    Article  CAS  PubMed  Google Scholar 

  92. Du Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22(2):194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chu YY, et al. Blocking c-Met and EGFR reverses acquired resistance of PARP inhibitors in triple-negative breast cancer. Am J Cancer Res. 2020;10(2):648–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ayoub NM, et al. Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels. Invest New Drugs. 2021;39(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  95. Ayoub NM, et al. Combined crizotinib and endocrine drugs inhibit proliferation, migration, and colony formation of breast cancer cells via downregulation of MET and estrogen receptor. Med Oncol. 2021;38(1):8.

    Article  CAS  PubMed  Google Scholar 

  96. Ma PC, et al. A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clin Cancer Res. 2005;11(6):2312–9.

    Article  CAS  PubMed  Google Scholar 

  97. Zeng JY, et al. Synergistic activities of MET/RON inhibitor BMS-777607 and mTOR inhibitor AZD8055 to polyploid cells derived from pancreatic cancer and cancer stem cells. Mol Cancer Ther. 2014;13(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  98. Olmez I, et al. Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in glioblastoma. Cancer Res. 2018;78(15):4360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fuse MA, et al. Combination therapy with c-Met and Src inhibitors induces caspase-dependent apoptosis of merlin-deficient Schwann cells and suppresses growth of Schwannoma cells. Mol Cancer Ther. 2017;16(11):2387–98.

    Article  CAS  PubMed  Google Scholar 

  100. Safaie Qamsari E, et al. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol. 2017;39(5):1010428317699118.

    Article  PubMed  Google Scholar 

  101. Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol. 2014;60(2):442–52.

    Article  CAS  PubMed  Google Scholar 

  102. Smolen GA, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103(7):2316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Melo Gagliato D, et al. Analysis of MET genetic aberrations in patients with breast cancer at MD Anderson Phase I unit. Clin Breast Cancer. 2014;14(6):468–74.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Janne PA, et al. Combined Pan-HER and ALK/ROS1/MET inhibition with dacomitinib and crizotinib in advanced non-small cell lung cancer: Results of a phase I study. J Thorac Oncol. 2016;11(5):737–47.

    Article  PubMed  Google Scholar 

  105. Wang W, et al. Crizotinib with or without an EGFR-TKI in treating EGFR-mutant NSCLC patients with acquired MET amplification after failure of EGFR-TKI therapy: a multicenter retrospective study. J Transl Med. 2019;17(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Neal JW, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17(12):1661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Spigel DR, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Spigel DR, et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non-small-cell lung cancer: METLung. J Clin Oncol. 2017;35(4):412–20.

    Article  CAS  PubMed  Google Scholar 

  109. Goldman JW, et al. Phase 1 dose-escalation trial evaluating the combination of the selective MET (mesenchymal-epithelial transition factor) inhibitor tivantinib (ARQ 197) plus erlotinib. Cancer. 2012;118(23):5903–11.

    Article  CAS  PubMed  Google Scholar 

  110. Scagliotti GV, et al. Tivantinib in combination with erlotinib versus erlotinib alone for EGFR-mutant NSCLC: An exploratory analysis of the Phase 3 MARQUEE study. J Thorac Oncol. 2018;13(6):849–54.

    Article  CAS  PubMed  Google Scholar 

  111. Wu YL, et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 2018;36(31):3101–9.

    Article  CAS  PubMed  Google Scholar 

  112. Twardowski PW, et al. Parallel (Randomized) phase II evaluation of tivantinib (ARQ197) and tivantinib in combination with erlotinib in papillary renal cell carcinoma: SWOG S1107. Kidney Cancer. 2017;1(2):123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 2010;10(7):658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marona P, et al. C-Met as a key factor responsible for sustaining undifferentiated phenotype and therapy resistance in renal carcinomas. Cells. 2019;8(3):272.

    Article  CAS  PubMed Central  Google Scholar 

  115. Ruiz-Morales JM, Heng DY. Cabozantinib in the treatment of advanced renal cell carcinoma: clinical trial evidence and experience. Ther Adv Urol. 2016;8(6):338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Choueiri TK, et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. Eur J Cancer. 2018;94:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Michaelson MD, et al. A phase Ib study of axitinib in combination with crizotinib in patients with metastatic renal cell cancer or other advanced solid tumors. Oncologist. 2019;24(9):1151-e817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chia SK, et al. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res. 2017;19(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Broniscer A, et al. Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer. 2018;65(7):e27035.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Greenwalt I, et al. Precision medicine and targeted therapies in breast cancer. Surg Oncol Clin N Am. 2020;29(1):51–62.

    Article  PubMed  Google Scholar 

  121. de Bono JS, Yap TA. Future directions in the evaluation of c-MET-driven malignancies. Ther Adv Med Oncol. 2011;3(1 Suppl):S51-60.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yap TA, de Bono JS. Targeting the HGF/c-Met axis: state of play. Mol Cancer Ther. 2010;9(5):1077–9.

    Article  CAS  PubMed  Google Scholar 

  123. Volm M, Efferth T. Prediction of cancer drug resistance and implications for personalized medicine. Front Oncol. 2015;5:282.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Agwa ES, Ma PC. Targeting the MET receptor tyrosine kinase in non-small cell lung cancer: emerging role of tivantinib. Cancer Manag Res. 2014;6:397–404.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad M. Ayoub.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, N.M., Ibrahim, D.R. & Alkhalifa, A.E. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies. Med Oncol 38, 143 (2021). https://doi.org/10.1007/s12032-021-01596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01596-6

Keywords

Navigation