Skip to main content

Advertisement

Log in

Notch signaling in oral pre-cancer and oral cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Notch signaling involves cell to cell contact. It is an ancient signaling mechanism that is conserved throughout the animal kingdom. The basic function of Notch signaling is to decide cell fate and execute asymmetrical division. Notch signaling is indispensable for embryo growth. Aberrant Notch signaling involves in cancer progression by altering cell proliferation rate, tumor micro-environment, stem cell activities. The role of Notch signaling in cancer progression is context-dependent. In breast cancer and T cell lymphoma Notch signaling is highly active, whereas in squamous cell carcinoma (SCC) as oral and skin cancer, the signaling is suppressed. It is believed that in SCC, Notch-mediated tumor growth is due to the cell non-autonomous function. Oral cancer is the 6th most risky cancer worldwide. In many patients, oral cancer is preceded by pre-cancer conditions. In this review, we have summarized the research knowledge related to the role of Notch signaling in oral cancer and pre-cancer conditions and the therapeutic options available targeting different components of Notch pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Käsbauer T, Towb P, Alexandrova O, David CN, Dall’armi E, Staudigl A, Stiening B, Böttger A. The Notch signaling pathway in the cnidarian Hydra. Dev Biol. 2007;303(1):376–90. https://doi.org/10.1016/j.ydbio.2006.11.022.

    Article  CAS  PubMed  Google Scholar 

  2. Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol. 2009;9:249. https://doi.org/10.1186/1471-2148-9-249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol. 2004;24(21):9265–73. https://doi.org/10.1128/MCB.24.21.9265-9273.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, Matsumoto N, Ishizuka-Katsura Y, Nakayama T, Itoh N, Jiang J, Nishitomi K, Kamino K, Morihara T, Hashimoto R, Tanaka T, Kudo T, Chiba S, Takeda M. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol. 2008;28(1):165–76. https://doi.org/10.1128/MCB.00863-07.

    Article  CAS  PubMed  Google Scholar 

  5. D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol. 2010;92:73–129. https://doi.org/10.1016/S0070-2153(10)92003-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991;67(4):687–99. https://doi.org/10.1016/0092-8674(91)90064-6.

    Article  CAS  PubMed  Google Scholar 

  7. Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ. 2020;62(1):35–48. https://doi.org/10.1111/dgd.12643.

    Article  PubMed  Google Scholar 

  8. Okajima T, Xu A, Irvine KD. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem. 2003;278(43):42340–5. https://doi.org/10.1074/jbc.M308687200.

    Article  CAS  PubMed  Google Scholar 

  9. Parks AL, Klueg KM, Stout JR, Muskavitch MA. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development (Cambridge, England). 2000;127(7):1373–85.

    Article  CAS  Google Scholar 

  10. Andersen P, Uosaki H, Shenje LT, Kwon C. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 2012;22(5):257–65. https://doi.org/10.1016/j.tcb.2012.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katoh M. WNT signaling in stem cell biology and regenerative medicine. Curr Drug Targets. 2008;9(7):565–70. https://doi.org/10.2174/138945008784911750.

    Article  CAS  PubMed  Google Scholar 

  12. Pierfelice TJ, Schreck KC, Eberhart CG, Gaiano N. Notch, neural stem cells, and brain tumors. Cold Spring Harb Symp Quant Biol. 2008;73:367–75. https://doi.org/10.1101/sqb.2008.73.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klauzinska M, Castro NP, Rangel MC, Spike BT, Gray PC, Bertolette D, Cuttitta F, Salomon D. The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol. 2014;29:51–8. https://doi.org/10.1016/j.semcancer.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  14. Dongre A, Surampudi L, Lawlor RG, Fauq AH, Miele L, Golde TE, Minter LM, Osborne BA. Non-canonical notch signaling drives activation and differentiation of peripheral CD4(+) T cells. Front Immunol. 2014;5:54. https://doi.org/10.3389/fimmu.2014.00054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin HM, Tilahun ME, Cho OH, Chandiran K, Kuksin CA, Keerthivasan S, Fauq AH, Golde TE, Miele L, Thome M, Osborne BA, Minter LM. NOTCH1 can initiate NF-κB activation via cytosolic interactions with components of the T Cell signalosome. Front Immunol. 2014;5:249. https://doi.org/10.3389/fimmu.2014.00249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Porcheri C, Meisel CT, Mitsiadis T. Multifactorial contribution of notch signaling in head and neck squamous cell carcinoma. Int J Mol Sci. 2019;20(6):1520. https://doi.org/10.3390/ijms20061520.

    Article  CAS  PubMed Central  Google Scholar 

  17. Gupta N, Gupta R, Acharya AK, Patthi B, Goud V, Reddy S, Garg A, Singla A. Changing trends in oral cancer—a global scenario. Nepal J Epidemiol. 2016;6(4):613–9. https://doi.org/10.3126/nje.v6i4.17255.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sharma S, Satyanarayana L, Asthana S, Shivalingesh KK, Goutham BS, Ramachandra S. Oral cancer statistics in India on the basis of first report of 29 population-based cancer registries. J Oral Maxillofac Pathol JOMFP. 2018;22(1):18–26. https://doi.org/10.4103/jomfp.JOMFP_113_17.

    Article  PubMed  Google Scholar 

  19. Pignon JP, le Maître A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14. https://doi.org/10.1016/j.radonc.2009.04.014.

    Article  PubMed  Google Scholar 

  20. Yardimci G, Kutlubay Z, Engin B, Tuzun Y. Precancerous lesions of oral mucosa. World J Clin Cases. 2014;2(12):866–72. https://doi.org/10.12998/wjcc.v2.i12.866.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta PC, Mehta FS, Pindborg JJ, Bhonsle RB, Murti PR, Daftary DK, Aghi MB. Primary prevention trial of oral cancer in india: a 10-year follow-up study. J Oral Pathol Med. 1992;21(10):433–9. https://doi.org/10.1111/j.1600-0714.1992.tb00970.x.

    Article  CAS  PubMed  Google Scholar 

  22. Bánóczy J. Oral leukoplakia and other white lesions of the oral mucosa related to dermatological disorders. J Cutan Pathol. 1983;10(4):238–56. https://doi.org/10.1111/j.1600-0560.1983.tb01490.x.

    Article  PubMed  Google Scholar 

  23. Downer MC, Petti S. Leukoplakia prevalence estimate lower than expected. Evid Based Dent. 2005;6(1):12–4. https://doi.org/10.1038/sj.ebd.6400306.

    Article  PubMed  Google Scholar 

  24. van der Waal I. Oral potentially malignant disorders: is malignant transformation predictable and preventable? Med Oral Patol Oral Cir Bucal. 2014;19(4):e386–90. https://doi.org/10.4317/medoral.20205.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Srivastava R, Jyoti B, Pradhan D, Siddiqui Z. Prevalence of oral submucous fibrosis in patients visiting dental OPD of a dental college in Kanpur: a demographic study. J Fam Med Primary Care. 2019;8(8):2612–7. https://doi.org/10.4103/jfmpc.jfmpc_465_19.

    Article  Google Scholar 

  26. Zweidler-McKay PA, Pear WS. Notch and T cell malignancy. Semin Cancer Biol. 2004;14(5):329–40. https://doi.org/10.1016/j.semcancer.2004.04.012.

    Article  CAS  PubMed  Google Scholar 

  27. Nakano K, Takabatake K, Kawai H, Yoshida S, Maeda H, Kawakami T, Nagatsuka H. Notch signaling affects oral neoplasm cell differentiation and acquisition of tumor-specific characteristics. Int J Mol Sci. 2019;20(8):1973. https://doi.org/10.3390/ijms20081973.

    Article  CAS  PubMed Central  Google Scholar 

  28. Sanderson RJ, Ironside JA. Squamous cell carcinomas of the head and neck. BMJ (Clinical Research ed). 2002;325(7368):822–7. https://doi.org/10.1136/bmj.325.7368.822.

    Article  CAS  Google Scholar 

  29. Mandasari M, Sawangarun W, Katsube K, Kayamori K, Yamaguchi A, Sakamoto K. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis. Biochem Biophys Res Commun. 2016;469(3):761–7. https://doi.org/10.1016/j.bbrc.2015.12.006.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao ZL, Zhang L, Huang CF, Ma SR, Bu LL, Liu JF, Yu GT, Liu B, Gutkind JS, Kulkarni AB, Zhang WF, Sun ZJ. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep. 2016;6:24704. https://doi.org/10.1038/srep24704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, et al. Proteomics. Tissue-based map of the human proteome. Science (New York, NY). 2015;347(6220):1260419. https://doi.org/10.1126/science.1260419.

    Article  CAS  Google Scholar 

  32. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28(12):1248–50. https://doi.org/10.1038/nbt1210-1248.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang TH, Liu HC, Zhu LJ, Chu M, Liang YJ, Liang LZ, Liao GQ. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40(1):37–45. https://doi.org/10.1111/j.1600-0714.2010.00931.x.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang TH, Liu HC, Liang YJ, Liang LZ, Zheng GS, Huang HZ, Wu JN, Liao GQ. Suppression of tongue squamous cell carcinoma growth by inhibition of Jagged1 in vitro and in vivo. J Oral Pathol Med. 2013;42(4):322–31. https://doi.org/10.1111/jop.12013.

    Article  PubMed  Google Scholar 

  35. Cai X, Gong P, Huang Y, Lin Y. Notch signalling pathway in tooth development and adult dental cells. Cell Prolif. 2011;44(6):495–507. https://doi.org/10.1111/j.1365-2184.2011.00780.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998;12(7):1046–57. https://doi.org/10.1101/gad.12.7.1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Casey LM, Lan Y, Cho ES, Maltby KM, Gridley T, Jiang R. Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn. 2006;235(7):1830–44. https://doi.org/10.1002/dvdy.20821.

    Article  CAS  PubMed  Google Scholar 

  38. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73. https://doi.org/10.1086/505332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol. 2014;99(4):675–87. https://doi.org/10.1113/expphysiol.2013.077255.

    Article  CAS  PubMed  Google Scholar 

  40. Rosati E, Baldoni S, De Falco F, Del Papa B, Dorillo E, Rompietti C, Albi E, Falzetti F, Di Ianni M, Sportoletti P. NOTCH1 aberrations in chronic lymphocytic leukemia. Front Oncol. 2018;8:229. https://doi.org/10.3389/fonc.2018.00229.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arruga F, Vaisitti T, Deaglio S. The NOTCH pathway and its mutations in mature B cell malignancies. Front Oncol. 2018;8:550. https://doi.org/10.3389/fonc.2018.00550.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Silkenstedt E, Arenas F, Colom-Sanmartí B, Xargay-Torrent S, Higashi M, Giró A, Rodriguez V, Fuentes P, Aulitzky WE, van der Kuip H, Beà S, Toribio ML, Campo E, López-Guerra M, Colomer D. Notch1 signaling in NOTCH1-mutated mantle cell lymphoma depends on Delta-Like ligand 4 and is a potential target for specific antibody therapy. J Exp Clin Cancer Res CR. 2019;38(1):446. https://doi.org/10.1186/s13046-019-1458-7.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Xie ZY, Guo XT, Xiao XH, Xiong LX. Notch and breast cancer metastasis: current knowledge, new sights and targeted therapy. Oncol Lett. 2019;18(3):2743–55. https://doi.org/10.3892/ol.2019.10653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou B, Zhou XL, Lai SQ, Liu JC. Notch signaling and non-small cell lung cancer. Oncol Lett. 2018;15(3):3415–21. https://doi.org/10.3892/ol.2018.7738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janghorban M, Xin L, Rosen JM, Zhang XH. Notch signaling as a regulator of the tumor immune response: to target or not to target? Front Immunol. 2018;9:1649. https://doi.org/10.3389/fimmu.2018.01649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7(3):159–74. https://doi.org/10.1007/s13238-016-0250-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, Espinet E, Herpel E, Menuchin A, Chang-Claude J, Hoffmeister M, Gebhardt C, Brenner H, Trumpp A, Siebel CW, Hecker M, Utikal J, Sprinzak D, Fischer A. Endothelial Notch1 activity facilitates metastasis. Cancer Cell. 2017;31(3):355–67. https://doi.org/10.1016/j.ccell.2017.01.007.

    Article  CAS  PubMed  Google Scholar 

  48. Bae YH, Park HJ, Kim SR, Kim JY, Kang Y, Kim JA, Wee HJ, Kageyama R, Jung JS, Bae MK, Bae SK. Notch1 mediates visfatin-induced FGF-2 up-regulation and endothelial angiogenesis. Cardiovasc Res. 2011;89(2):436–45. https://doi.org/10.1093/cvr/cvq276.

    Article  CAS  PubMed  Google Scholar 

  49. Demehri S, Turkoz A, Kopan R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell. 2009;16(1):55–66. https://doi.org/10.1016/j.ccr.2009.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salameti V, Bhosale PG, Ames-Draycott A, Sipilä K, Watt FM. NOTCH1 signaling in oral squamous cell carcinoma via a TEL2/SERPINE1 axis. Oncotarget. 2019;10(63):6791–804. https://doi.org/10.18632/oncotarget.27306.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kling JC, Blumenthal A. Roles of WNT, NOTCH, and Hedgehog signaling in the differentiation and function of innate and innate-like lymphocytes. J Leukoc Biol. 2017;101(4):827–40. https://doi.org/10.1189/jlb.1MR0616-272R.

    Article  CAS  PubMed  Google Scholar 

  52. Lahiry M, Kumar S, Hari K, et al. AMPK-Fyn signaling promotes Notch1 stability to potentiate hypoxia-induced breast cancer stemness and drug resistance. bioRxiv. 2020. https://doi.org/10.1101/458489.

    Article  Google Scholar 

  53. Gan RH, Wei H, Xie J, Zheng DP, Luo EL, Huang XY, Xie J, Zhao Y, Ding LC, Su BH, Lin LS, Zheng DL, Lu YG. Notch1 regulates tongue cancer cells proliferation, apoptosis and invasion. Cell Cycle (Georgetown, TX). 2018;17(2):216–24. https://doi.org/10.1080/15384101.2017.1395534.

    Article  CAS  Google Scholar 

  54. Ding X, Zheng Y, Wang Z, Zhang W, Dong Y, Chen W, Li J, Chu W, Zhang W, Zhong Y, Mao L, Song X, Wu Y. Expression and oncogenic properties of membranous Notch1 in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep. 2018;39(6):2584–94. https://doi.org/10.3892/or.2018.6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baumgart A, Mazur PK, Anton M, Rudelius M, Schwamborn K, Feuchtinger A, Behnke K, Walch A, Braren R, Peschel C, Duyster J, Siveke JT, Dechow T. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene. 2015;34(5):578–88. https://doi.org/10.1038/onc.2013.592.

    Article  CAS  PubMed  Google Scholar 

  56. Fukusumi T, Califano JA. The NOTCH pathway in head and neck squamous cell carcinoma. J Dent Res. 2018;97(6):645–53. https://doi.org/10.1177/0022034518760297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ, Grigsby PW, Miner JH, Farr AG, Kopan R. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 2008;6(5):e123. https://doi.org/10.1371/journal.pbio.0060123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moriyama Y, Sekine C, Koyanagi A, Koyama N, Ogata H, Chiba S, Hirose S, Okumura K, Yagita H. Delta-like 1 is essential for the maintenance of marginal zone B cells in normal mice but not in autoimmune mice. Int Immunol. 2008;20(6):763–73. https://doi.org/10.1093/intimm/dxn034.

    Article  CAS  PubMed  Google Scholar 

  59. Radojcic V, Maillard I. A jagged road to lymphoma aggressiveness. Cancer Cell. 2014;25(3):261–3. https://doi.org/10.1016/j.ccr.2014.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bell D, Hanna EY, Miele L, Roberts D, Weber RS, El-Naggar AK. Expression and significance of notch signaling pathway in salivary adenoid cystic carcinoma. Ann Diagn Pathol. 2014;18(1):10–3. https://doi.org/10.1016/j.anndiagpath.2013.10.001.

    Article  PubMed  Google Scholar 

  61. Yi Y, Tian Z, Ju H, Ren G, Hu J. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing. Int J Mol Med. 2017;39(6):1541–7. https://doi.org/10.3892/ijmm.2017.2965.

    Article  CAS  PubMed  Google Scholar 

  62. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95. https://doi.org/10.1038/ncb1998.

    Article  CAS  PubMed  Google Scholar 

  63. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, Ohata Y, Akashi T, Saitoh M, Harada K, Harada H, Yamaguchi A. NOTCH3 Is induced in cancer-associated fibroblasts and promotes angiogenesis in oral squamous cell carcinoma. PLoS ONE. 2016;11(4):e0154112. https://doi.org/10.1371/journal.pone.0154112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lunde ML, Roman E, Warnakulasuriya S, Mehrotra R, Laranne J, Vasstrand EN, Ibrahim SO. Profiling of chromosomal changes in potentially malignant and malignant oral mucosal lesions from South and South-East Asia using array-comparative genomic hybridization. Cancer Genomics Proteomics. 2014;11(3):127–40.

    PubMed  Google Scholar 

  65. Harishankar MK, Mohan AM, Krishnan AV, Devi A. Downregulation of Notch4—a prognostic marker in distinguishing oral verrucous carcinoma from oral squamous cell carcinoma. Braz J Otorhinolaryngol. 2019;85(1):11–6. https://doi.org/10.1016/j.bjorl.2017.09.005.

    Article  CAS  PubMed  Google Scholar 

  66. Shen Q, Zhong W, Jan YN, Temple S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development (Cambridge, England). 2002;129(20):4843–53.

    Article  CAS  Google Scholar 

  67. Flores AN, McDermott N, Meunier A, Marignol L. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol. 2014;11(9):499–507. https://doi.org/10.1038/nrurol.2014.195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li JY, Huang WX, Zhou X, Chen J, Li Z. Numb inhibits epithelial-mesenchymal transition via RBP-Jκ-dependent Notch1/PTEN/FAK signaling pathway in tongue cancer. BMC Cancer. 2019;19(1):391. https://doi.org/10.1186/s12885-019-5605-5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chou CH, Tu HF, Kao SY, Chiang CF, Liu CJ, Chang KW, Lin SC. Targeting of miR-31/96/182 to the Numb gene during head and neck oncogenesis. Head Neck. 2018;40(4):808–17. https://doi.org/10.1002/hed.25063.

    Article  PubMed  Google Scholar 

  70. Namboodiripad PC. A review: immunological markers for malignant salivary gland tumors. J Oral Biol Craniofac Res. 2014;4(2):127–34. https://doi.org/10.1016/j.jobcr.2014.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt B):2071–81. https://doi.org/10.1016/j.bbamcr.2017.06.005.

    Article  CAS  PubMed  Google Scholar 

  72. Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets. 2017;28(4):333–41. https://doi.org/10.1080/09537104.2016.1184751.

    Article  CAS  PubMed  Google Scholar 

  73. Higashiyama S, Nanba D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochem Biophys Acta. 2005;1751(1):110–7. https://doi.org/10.1016/j.bbapap.2004.11.009.

    Article  CAS  PubMed  Google Scholar 

  74. Le Gall SM, Bobé P, Reiss K, Horiuchi K, Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P, Blobel CP. ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol Biol Cell. 2009;20(6):1785–94. https://doi.org/10.1091/mbc.e08-11-1135.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Groot AJ, Vooijs MA. The role of Adams in Notch signaling. Adv Exp Med Biol. 2012;727:15–36. https://doi.org/10.1007/978-1-4614-0899-4_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, Röcken C. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol. 2005;131(1):41–8. https://doi.org/10.1007/s00432-004-0619-y.

    Article  CAS  PubMed  Google Scholar 

  77. Jones AV, Lambert DW, Speight PM, Whawell SA. ADAM 10 is over expressed in oral squamous cell carcinoma and contributes to invasive behaviour through a functional association with αvβ6 integrin. FEBS Lett. 2013;587(21):3529–34. https://doi.org/10.1016/j.febslet.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  78. Ascano JM, Beverly LJ, Capobianco AJ. The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem. 2003;278(10):8771–9. https://doi.org/10.1074/jbc.M211427200.

    Article  CAS  PubMed  Google Scholar 

  79. Pelullo M, Nardozza F, Zema S, Quaranta R, Nicoletti C, Besharat ZM, Felli MP, Cerbelli B, d’Amati G, Palermo R, Capalbo C, Talora C, Di Marcotullio L, Giannini G, Checquolo S, Screpanti I, Bellavia D. Kras/ADAM17-dependent Jag1-ICD reverse signaling sustains colorectal cancer progression and chemoresistance. Can Res. 2019;79(21):5575–86. https://doi.org/10.1158/0008-5472.CAN-19-0145.

    Article  CAS  Google Scholar 

  80. Colombo M, Garavelli S, Mazzola M, Platonova N, Giannandrea D, Colella R, Apicella L, Lancellotti M, Lesma E, Ancona S, Palano MT, Barbieri M, Taiana E, Lazzari E, Basile A, Turrini M, Pistocchi A, Neri A, Chiaramonte R. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance. Haematologica. 2020;105(7):1925–36. https://doi.org/10.3324/haematol.2019.221077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Silva F, Félix A, Serpa J. Functional redundancy of the Notch pathway in ovarian cancer cell lines. Oncol Lett. 2016;12(4):2686–91. https://doi.org/10.3892/ol.2016.4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vasilaki E, Kanaki Z, Stravopodis DJ, Klinakis A. Dll1 marks cells of origin of ras-induced cancer in mouse squamous epithelia. Transl Oncol. 2018;11(5):1213–9. https://doi.org/10.1016/j.tranon.2018.07.011.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Estrach S, Legg J, Watt FM. Syntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture. J Cell Sci. 2007;120(Pt 16):2944–52. https://doi.org/10.1242/jcs.016253.

    Article  CAS  PubMed  Google Scholar 

  84. Liu X, Fuentes EJ. Emerging themes in PDZ domain signaling: structure, function, and inhibition. Int Rev Cell Mol Biol. 2019;343:129–218. https://doi.org/10.1016/bs.ircmb.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  85. Yapijakis C, Serefoglou Z, Vylliotis A, Nkenke E, Derka S, Vassiliou S, Avgoustidis D, Neukam FW, Patsouris E, Vairaktaris E. Association of polymorphisms in tumor necrosis factor alpha and beta genes with increased risk for oral cancer. Anticancer Res. 2009;29(6):2379–86.

    CAS  PubMed  Google Scholar 

  86. Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as modulators of oral tumorigenesis-A focused review. Int J Mol Sci. 2021;22(5):2561. https://doi.org/10.3390/ijms22052561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ghosh RD, Pattatheyil A, Roychoudhury S. Functional landscape of dysregulated MicroRNAs in oral squamous cell carcinoma: clinical implications. Front Oncol. 2020;10:619. https://doi.org/10.3389/fonc.2020.00619.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li YC, Chang JT, Chiu C, Lu YC, Li YL, Chiang CH, You GR, Lee LY, Cheng AJ. Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. Mol Carcinogenes. 2016;55(5):1012–23. https://doi.org/10.1002/mc.22344.

    Article  CAS  Google Scholar 

  89. Tsai YS, Lin CS, Chiang SL, Lee CH, Lee KW, Ko YC. Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci. 2011;123(2):480–90. https://doi.org/10.1093/toxsci/kfr182.

    Article  CAS  PubMed  Google Scholar 

  90. Chou ST, Peng HY, Mo KC, Hsu YM, Wu GH, Hsiao JR, Lin SF, Wang HD, Shiah SG. MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1. J Exp Clin Cancer Res CR. 2019;38(1):281. https://doi.org/10.1186/s13046-019-1283-z.

    Article  CAS  PubMed  Google Scholar 

  91. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 2012;31(1–2):295–321. https://doi.org/10.1007/s10555-012-9346-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chattopadhyay E, Singh R, Ray A, Roy R, De Sarkar N, Paul RR, Pal M, Aich R, Roy B. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci Rep. 2016;6:32735. https://doi.org/10.1038/srep32735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li N, Nan CC, Zhong XY, Weng JQ, Fan HD, Sun HP, Tang S, Shi L, Huang SX. miR-182-5p promotes growth in oral squamous cell carcinoma by inhibiting CAMK2N1. Cell Physiol Biochem. 2018;49(4):1329–41. https://doi.org/10.1159/000493411.

    Article  CAS  PubMed  Google Scholar 

  94. Yu CC, Chang YC. Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL. Toxicol Appl Pharmacol. 2013;266(3):459–69. https://doi.org/10.1016/j.taap.2012.11.023.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang TH, Liang LZ, Liu XL, Wu JN, Su K, Chen JY, Zheng QY. LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J Cell Biochem. 2019;120(6):10495–504. https://doi.org/10.1002/jcb.28334.

    Article  CAS  PubMed  Google Scholar 

  96. Zheng Y, Wang Z, Xiong X, Zhong Y, Zhang W, Dong Y, Li J, Zhu Z, Zhang W, Wu H, Gu W, Wu Y, Wang X, Song X. Membrane-tethered Notch1 exhibits oncogenic property via activation of EGFR-PI3K-AKT pathway in oral squamous cell carcinoma. J Cell Physiol. 2019;234(5):5940–52. https://doi.org/10.1002/jcp.27022.

    Article  CAS  PubMed  Google Scholar 

  97. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002;277(24):21843–50. https://doi.org/10.1074/jbc.M109745200.

    Article  CAS  PubMed  Google Scholar 

  98. Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol CB. 1999;9(11):601–4. https://doi.org/10.1016/s0960-9822(99)80265-6.

    Article  CAS  PubMed  Google Scholar 

  99. Liu Z, Li H, Fan S, Lin H, Lian W. STAT3-induced upregulation of long noncoding RNA HNF1A-AS1 promotes the progression of oral squamous cell carcinoma via activating Notch signaling pathway. Cancer Biol Ther. 2019;20(4):444–53. https://doi.org/10.1080/15384047.2018.1529119.

    Article  CAS  PubMed  Google Scholar 

  100. Li B, Chen M, Lu M, Xin-Xiang J, Meng-Xiong P, Jun-Wu M. Glutaredoxin 3 promotes migration and invasion via the Notch signalling pathway in oral squamous cell carcinoma. Free Radical Res. 2018;52(4):390–401. https://doi.org/10.1080/10715762.2018.1435871.

    Article  CAS  Google Scholar 

  101. Kondoh K, Sunadome K, Nishida E. Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem. 2007;282(5):3058–65. https://doi.org/10.1074/jbc.M607630200.

    Article  CAS  PubMed  Google Scholar 

  102. From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO), Sacks D, Baxter B, Campbell B, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32. https://doi.org/10.1177/1747493018778713.

    Article  Google Scholar 

  103. Katoh M, Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 2020;45(2):279–97. https://doi.org/10.3892/ijmm.2019.4418.

    Article  CAS  PubMed  Google Scholar 

  104. Nirogacestat for Adults With Desmoid Tumor/Aggressive Fibromatosis (DT/AF) (DeFi). https://clinicaltrials.gov/ct2/show/NCT03785964

  105. Ferrarotto R, Eckhardt G, Patnaik A, LoRusso P, Faoro L, Heymach JV, Kapoun AM, Xu L, Munster P. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol. 2018;29(7):1561–8. https://doi.org/10.1093/annonc/mdy171.

    Article  CAS  PubMed  Google Scholar 

  106. Yen W-C, et al. Targeting notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21(9):2084–95. https://doi.org/10.1158/1078-0432.CCR-14-2808.

    Article  CAS  PubMed  Google Scholar 

  107. Kim Y, Byeon SJ, Hur J, Lee K, Kim D, Ahn JH, Lee SH, You WK, Kim ST, Park SH, Kang WK, Kim KM, Lee J. High delta-like ligand 4 expression correlates with a poor clinical outcome in gastric cancer. J Cancer. 2019;10(14):3172–8. https://doi.org/10.7150/jca.30257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Witters L, Scherle P, Friedman S, Fridman J, Caulder E, Newton R, Lipton A. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. Can Res. 2008;68(17):7083–9. https://doi.org/10.1158/0008-5472.CAN-08-0739.

    Article  CAS  Google Scholar 

  109. Mustafi R, Dougherty U, Mustafi D, Ayaloglu-Butun F, Fletcher M, Adhikari S, Sadiq F, Meckel K, Haider HI, Khalil A, Pekow J, Konda V, Joseph L, Hart J, Fichera A, Li YC, Bissonnette M. ADAM17 is a tumor promoter and therapeutic target in western diet-associated colon cancer. Clin Cancer Res. 2017;23(2):549–61. https://doi.org/10.1158/1078-0432.CCR-15-3140.

    Article  CAS  PubMed  Google Scholar 

  110. Duffy MJ, Mullooly M, O’Donovan N, Sukor S, Crown J, Pierce A, McGowan PM. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics. 2011;8(1):9. https://doi.org/10.1186/1559-0275-8-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Binesh A, Devaraj SN, Devaraj H. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie. 2018;148:63–71. https://doi.org/10.1016/j.biochi.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  112. Kiesel VA, Stan SD. Diallyl trisulfide, a chemopreventive agent from Allium vegetables, inhibits alpha-secretases in breast cancer cells. Biochem Biophys Res Commun. 2017;484(4):833–8. https://doi.org/10.1016/j.bbrc.2017.01.184.

    Article  CAS  PubMed  Google Scholar 

  113. Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma L, Liu Q, Du Y, Yang J, Wang Q. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol Lett. 2018;15(1):908–16. https://doi.org/10.3892/ol.2017.7434.

    Article  CAS  PubMed  Google Scholar 

  114. Shehzad A, Lee YS. Molecular mechanisms of curcumin action: signal transduction. BioFactors (Oxford, England). 2013;39(1):27–36. https://doi.org/10.1002/biof.1065.

    Article  CAS  Google Scholar 

  115. Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: role in targeting cancer stem cells. Crit Rev Food Sci Nutr. 2017;57(16):3449–63. https://doi.org/10.1080/10408398.2015.1129310.

    Article  CAS  PubMed  Google Scholar 

  116. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010;9(1):202–10. https://doi.org/10.1158/1535-7163.MCT-09-0771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by Indian council of Medical Research (Grant No. 3/2/2/54/2018/Online Onco Fship, NCD-III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Kumar Srivastav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, K., Srivastav, R.K. Notch signaling in oral pre-cancer and oral cancer. Med Oncol 38, 139 (2021). https://doi.org/10.1007/s12032-021-01593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01593-9

Keywords

Navigation