Skip to main content

Advertisement

Log in

Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Obesity, which has become one of the biggest public health problems of the twenty-first century, accompanies many chronic conditions, including cancer. On the other hand, liver cancer, which is known to be associated with obesity, is considered another serious threat to public health. However, the underlying drivers of the development of obesity-associated hepatocellular carcinoma (HCC) remain blurry. The current study attempted to identify the key genes and pathways in the obesity-induced development of HCC using integrated bioinformatics analyses. Obesity and HCC-associated gene expression datasets were downloaded from Gene Expression Omnibus (GEO) and analyzed to identify overlapping differentially expressed genes (DEGs) and hub genes. The prognostic potentials, survival analysis, and expression levels of hub genes were further assessed. Moreover, the correlation between hub genes and the immune cells infiltration was analyzed. The findings of this research revealed that both mRNA and protein expression levels of the four hub genes (IGF1, ACADL, CYP2C9, and G6PD) involved in many important metabolic pathways are remarkably altered in both obese individuals and patients with HCC. The results demonstrated that these dysregulated genes in both obesity and HCC may serve as considerable targets for the prevention and treatment of HCC development in obese individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant datasets in the current study are available in the GEO repository.

References

  1. World Health Organization. Noncommunicable diseases country profiles 2018. Geneva: World Health Organization. 2018. https://www.who.int/nmh/publications/ncd-profiles-2018/en/. Last accessed 29 March 2021.

  2. World Health Organization. Global status report on noncommunicable diseases 2014. World Health Organization. 2014. https://www.who.int/nmh/publications/ncd-status-report-2014/en/. Last accessed 29 March 2021.

  3. Collaboration N C D R F. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42. https://doi.org/10.1016/S0140-6736(17)32129-3.

    Article  Google Scholar 

  4. Saitta C, Pollicino T, Raimondo G. Obesity and liver cancer. Ann Hepatol. 2019;18:810–5. https://doi.org/10.1016/j.aohep.2019.07.004.

    Article  PubMed  Google Scholar 

  5. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1. https://doi.org/10.4103/jcar.JCar_9_16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76. https://doi.org/10.1053/j.gastro.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  7. Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53. https://doi.org/10.2147/JHC.S61146.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med. 2011;365:147–56. https://doi.org/10.1056/NEJMra1011170.

    Article  CAS  PubMed  Google Scholar 

  9. Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World J Gastroenterol. 2010;16:3603–15. https://doi.org/10.3748/wjg.v16.i29.3603.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol. 2012;56:704–13. https://doi.org/10.1016/j.jhep.2011.09.020.

    Article  CAS  PubMed  Google Scholar 

  11. Larsson SC, Wolk A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer. 2007;97:1005–8. https://doi.org/10.1038/sj.bjc.6603932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katanoda K, Matsuda T. Five-year relative survival rate of liver cancer in the USA, Europe and Japan. Jpn J Clin Oncol. 2014;44:302–3. https://doi.org/10.1093/jjco/hyu025.

    Article  PubMed  Google Scholar 

  13. Zhang C, Peng L, Zhang Y, et al. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Med Oncol. 2017;34:101. https://doi.org/10.1007/s12032-017-0963-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lvovs D, Favorova OO, Favorov AV. A polygenic approach to the study of polygenic diseases. Acta Naturae. 2012;4:59–71. https://doi.org/10.32607/20758251-2012-4-3-59-71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Zheng L, Uchiyama A, et al. A data mining paradigm for identifying key factors in biological processes using gene expression data. Sci Rep. 2018;8:9083. https://doi.org/10.1038/s41598-018-27258-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pihlajamaki J, Boes T, Kim EY, et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab. 2009;94:3521–9. https://doi.org/10.1210/jc.2009-0212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan SX, Wang J, Yang F, et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology. 2016;63:499–511. https://doi.org/10.1002/hep.27893.

    Article  CAS  PubMed  Google Scholar 

  18. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–5. https://doi.org/10.1093/nar/gks1193.

    Article  CAS  PubMed  Google Scholar 

  19. Pathan M, Keerthikumar S, Ang CS, et al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15:2597–601. https://doi.org/10.1002/pmic.201400515.

    Article  CAS  PubMed  Google Scholar 

  20. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. https://doi.org/10.1093/nar/gku1003.

    Article  CAS  PubMed  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  23. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. https://doi.org/10.1093/nar/gkn923.

    Article  CAS  Google Scholar 

  24. Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60. https://doi.org/10.1093/nar/gkz430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gyorffy B, Surowiak P, Budczies J, et al. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One. 2013;8:e82241. https://doi.org/10.1371/journal.pone.0082241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58. https://doi.org/10.1016/j.neo.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–10. https://doi.org/10.1158/0008-5472.CAN-17-0307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. https://doi.org/10.1126/science.1260419.

    Article  CAS  PubMed  Google Scholar 

  29. Qi Z, Yan F, Chen D, et al. Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS-STING in hepatocellular carcinoma. 2020. Biosci Rep. https://doi.org/10.1042/BSR20202603.

  30. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33:673–89. https://doi.org/10.1007/s40273-014-0243-x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol. 2015;763:64–74. https://doi.org/10.1016/j.ejphar.2015.03.093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell NS, Catenacci VA, Wyatt HR, et al. Obesity: overview of an epidemic. Psychiatr Clin N Am. 2011;34:717–32. https://doi.org/10.1016/j.psc.2011.08.005.

    Article  Google Scholar 

  33. Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32:1431–7. https://doi.org/10.1038/ijo.2008.102.

    Article  CAS  Google Scholar 

  34. World Health Organization. International Agency for Research on Cancer. Cancer fact sheets. Liver cancer. https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf. Last accessed 29 March 2021.

  35. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 2019;92:82–97. https://doi.org/10.1016/j.metabol.2018.11.014.

    Article  CAS  PubMed  Google Scholar 

  36. Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–33. https://doi.org/10.1002/hep.29466.

    Article  CAS  PubMed  Google Scholar 

  37. Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology. 2014;59:2188–95. https://doi.org/10.1002/hep.26986.

    Article  PubMed  Google Scholar 

  38. Wrigley S, Arafa D, Tropea D. Insulin-like growth factor 1: at the crossroads of brain development and aging. Front Cell Neurosci. 2017;11:14. https://doi.org/10.3389/fncel.2017.00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu GS, Li ZW, Huang ZP, et al. MiR-497-5p inhibits cell proliferation and metastasis in hepatocellular carcinoma by targeting insulin-like growth factor 1. Mol Genet Genomic Med. 2019;7:e00860. https://doi.org/10.1002/mgg3.860.

    Article  PubMed  PubMed Central  Google Scholar 

  40. D’Alessandro R, Refolo MG, Lippolis C, et al. Strong enhancement by IGF1-R antagonists of hepatocellular carcinoma cell migration inhibition by Sorafenib and/or vitamin K1. Cell Oncol (Dordr). 2018;41:283–96. https://doi.org/10.1007/s13402-018-0370-z.

    Article  CAS  Google Scholar 

  41. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62. https://doi.org/10.1038/nrc2664.

    Article  CAS  PubMed  Google Scholar 

  42. Enguita-German M, Fortes P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma. World J Hepatol. 2014;6:716–37. https://doi.org/10.4254/wjh.v6.i10.716.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Su WW, Lee KT, Yeh YT, et al. Association of circulating insulin-like growth factor 1 with hepatocellular carcinoma: one cross-sectional correlation study. J Clin Lab Anal. 2010;24:195–200. https://doi.org/10.1002/jcla.20320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu B, Balkwill A, Reeves G, et al. Body mass index and risk of liver cirrhosis in middle aged UK women: prospective study. BMJ. 2010;340:c912. https://doi.org/10.1136/bmj.c912.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aleksandrova K, Stelmach-Mardas M, Schlesinger S. Obesity and liver cancer. Recent Results Cancer Res. 2016;208:177–98. https://doi.org/10.1007/978-3-319-42542-9_10.

    Article  CAS  PubMed  Google Scholar 

  46. Clemmons DR. Role of insulin-like growth factor iin maintaining normal glucose homeostasis. Horm Res. 2004;62(Suppl 1):77–82. https://doi.org/10.1159/000080763.

    Article  CAS  PubMed  Google Scholar 

  47. Lagana AS, Vitale SG, Nigro A, et al. Pleiotropic actions of peroxisome proliferator-activated receptors (PPARs) in dysregulated metabolic homeostasis, ınflammation and cancer: current evidence and future perspectives. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17070999.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lamichane S, Dahal Lamichane B, Kwon SM. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19040949.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Antonosante A, d’Angelo M, Castelli V, et al. The ınvolvement of PPARs in the peculiar energetic metabolism of tumor cells. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19071907.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang WH, Lai AG. The pan-cancer mutational landscape of the PPAR pathway reveals universal patterns of dysregulated metabolism and interactions with tumor immunity and hypoxia. Ann N Y Acad Sci. 2019;1448:65–82. https://doi.org/10.1111/nyas.14170.

    Article  CAS  PubMed  Google Scholar 

  51. Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33:469–77. https://doi.org/10.1007/s10545-010-9061-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xie BX, Zhang H, Wang J, et al. Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl. 2011;32:170–82. https://doi.org/10.2164/jandrol.109.008748.

    Article  CAS  PubMed  Google Scholar 

  53. Hill VK, Ricketts C, Bieche I, et al. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71:2988–99. https://doi.org/10.1158/0008-5472.CAN-10-4026.

    Article  CAS  PubMed  Google Scholar 

  54. Huang D, Li T, Li X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 2014;8:1930–42. https://doi.org/10.1016/j.celrep.2014.08.028.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao X, Qin W, Jiang Y, et al. ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma. NPJ Precis Oncol. 2020;4:7. https://doi.org/10.1038/s41698-020-0111-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu D, Green B, Marrone A, et al. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep. 2015;5:8534. https://doi.org/10.1038/srep08534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan AT, Tranah GJ, Giovannucci EL, et al. A prospective study of genetic polymorphisms in the cytochrome P-450 2C9 enzyme and the risk for distal colorectal adenoma. Clin Gastroenterol Hepatol. 2004;2:704–12. https://doi.org/10.1016/s1542-3565(04)00294-0.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez C, Garcia-Martin E, Ladero JM, et al. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis. 2001;22:1323–6. https://doi.org/10.1093/carcin/22.8.1323.

    Article  CAS  PubMed  Google Scholar 

  59. Louet M, Labbe CM, Fagnen C, et al. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS One. 2018;13:e0197249. https://doi.org/10.1371/journal.pone.0197249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsunedomi R, Iizuka N, Hamamoto Y, et al. Patterns of expression of cytochrome P450 genes in progression of hepatitis C virus-associated hepatocellular carcinoma. Int J Oncol. 2005;27:661–7.

    CAS  PubMed  Google Scholar 

  61. Xu XR, Huang J, Xu ZG, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA. 2001;98:15089–94. https://doi.org/10.1073/pnas.241522398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu DG, Marri S, McKinnon RA, et al. Deregulation of the genes that are involved in drug absorption, distribution, metabolism, and excretion in hepatocellular carcinoma. J Pharmacol Exp Ther. 2019;368:363–81. https://doi.org/10.1124/jpet.118.255018.

    Article  CAS  PubMed  Google Scholar 

  63. Shen J, Wang S, Zhang YJ, et al. Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology. 2012;55:1799–808. https://doi.org/10.1002/hep.25569.

    Article  CAS  PubMed  Google Scholar 

  64. Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013;19:4309–14. https://doi.org/10.1158/1078-0432.CCR-12-1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ozaslan MS, Balci N, Demir Y, et al. Inhibition effects of some antidepressant drugs on pentose phosphate pathway enzymes. Environ Toxicol Pharmacol. 2019;72:103244. https://doi.org/10.1016/j.etap.2019.103244.

    Article  CAS  PubMed  Google Scholar 

  66. Caliskan B, Ozturk Kesebir A, Demir Y, et al. The effect of brimonidine and proparacaine on metabolic enzymes: glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Biotechnol Appl Biochem. 2021. https://doi.org/10.1002/bab.2107.

    Article  PubMed  Google Scholar 

  67. Alfarouk KO, Ahmed SBM, Elliott RL, et al. The pentose phosphate pathway dynamics in cancer and ıts dependency on ıntracellular pH. Metabolites. 2020. https://doi.org/10.3390/metabo10070285.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kowalik MA, Columbano A, Perra A. Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol. 2017;7:87. https://doi.org/10.3389/fonc.2017.00087.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Demir Y, Turkes C, Beydemir S. Molecular docking studies and inhibition properties of some antineoplastic agents against paraoxonase-I. Anticancer Agents Med Chem. 2020;20:887–96. https://doi.org/10.2174/1871520620666200218110645.

    Article  CAS  PubMed  Google Scholar 

  70. Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol. 2019;71:1576–83. https://doi.org/10.1111/jphp.13144.

    Article  CAS  PubMed  Google Scholar 

  71. Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev Res. 2020;81:628–36. https://doi.org/10.1002/ddr.21667.

    Article  CAS  PubMed  Google Scholar 

  72. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54. https://doi.org/10.1016/j.tibs.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonul Baltaci N, Guler C, Ceylan H, et al. In vitro and in vivo effects of iron on the expression and activity of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase in rat spleen. J Biochem Mol Toxicol. 2018. https://doi.org/10.1002/jbt.22229.

    Article  PubMed  Google Scholar 

  74. Kocpinar EF, Gonul Baltaci N, Ceylan H, et al. Effect of a prolonged dietary iron intake on the gene expression and activity of the testicular antioxidant defense system in rats. Biol Trace Elem Res. 2020;195:135–41. https://doi.org/10.1007/s12011-019-01817-0.

    Article  CAS  PubMed  Google Scholar 

  75. Ma X, Wang L, Huang D, et al. Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway. Nat Commun. 2017;8:1506. https://doi.org/10.1038/s41467-017-01647-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ye H, Huang H, Cao F, et al. HSPB1 enhances SIRT2-mediated G6PD activation and promotes glioma cell proliferation. PLoS One. 2016;11:e0164285. https://doi.org/10.1371/journal.pone.0164285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Debeb BG, Lacerda L, Larson R, et al. Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism. Oncotarget. 2016;7:28329–39. https://doi.org/10.18632/oncotarget.8631.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ham M, Lee JW, Choi AH, et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol. 2013;33:2425–35. https://doi.org/10.1128/MCB.01260-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Ceylan.

Ethics declarations

Conflict of ınterest

The author declares that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Ethical approval

This study does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol 38, 63 (2021). https://doi.org/10.1007/s12032-021-01510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01510-0

Keywords

Navigation