Skip to main content
Log in

Integrated 16S rRNA Gene Sequencing and LC-MS Analysis Revealed the Interplay Between Gut Microbiota and Plasma Metabolites in Rats With Ischemic Stroke

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Gut microbiome and plasma metabolome serve a role in the pathogenesis of ischemic stroke (IS). However, the relationship between the microbiota and metabolites remains unclear. This study aimed to reveal the specific asso-ciation between the microbiota and the metabolites in IS using integrated 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analysis. Male Sprague Dawley (SD) rats were divided into three groups: normal group (n = 8, Normal), model group (n = 9, IS), and sham-operated group (n = 8, Sham). Rats in the IS group were induced by middle cerebral artery occlusion (MCAO), and rats in the Sham group received an initial anesthesia and neck incision only. A neurological function test and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to assess the IS rat model. Then, the plasma samples were analyzed using untargeted LC-MS. The cecum samples were collected and analyzed using 16S rRNA sequencing. Pearson correlation analysis was performed to explore the association between the gut microbiota and the plasma metabolites. The 16S rRNA sequencing showed that the composition and diversity of the microbiota in the IS and control rats were significantly different. Compared with the Sham group, the abundance of the Firmicutes phylum was decreased, whereas Proteobacteria and Deferribacteres were increased in the IS group. Ruminococcus_sp_15975 and Lachnospiraceae_UCG_001 might be considered as biomarkers for the IS and Sham groups, respectively. LC-MS analysis revealed that many metabolites, such as L-leucine, L-valine, and L-phenylalanine, displayed different patterns between the IS and Sham groups. Pathway analysis indicated that these metabolites were mainly involved in mineral absorption and cholinergic synapse. Furthermore, integrated analysis correlated IS-related microbes with metabolites. For example, Proteobacteria were positively correlated with L-phenylalanine, while they were negatively correlated with eicosapentaenoic acid (EPA). Our results provided evidence of the relationship between the gut microbiome and plasma metabolome in IS, suggesting that these microflora-related metabolites might serve as potential diagnostic and therapeutic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Addis L, Sproviero W, Thomas SV et al (2018) Identification of new risk factors for rolandic epilepsy: CNV at Xp22.31 and alterations at cholinergic synapses. J Med Genet 55:607–616

    Article  CAS  PubMed  Google Scholar 

  • Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 1866:165260

    Article  CAS  PubMed  Google Scholar 

  • Benakis C, Brea D, Caballero S et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhaddani SE, Houwing-Duistermaat J, Salo P, Perola M, Jongbloed G, Uh HW (2016) Evaluation of O2PLS in Omics data integration. BMC Bioinformatics 17(Suppl 2):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouhaddani SE, Uh HW, Jongbloed G et al (2018) Integrating omics datasets with the OmicsPLS package. BMC Bioinformatics 19:371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shang W, Li Y et al (2017) Advances on cerebrovascular disease researches in 2017. Clinical Focus 33:11–15

    Google Scholar 

  • Chen R, Xu Y, Wu P et al (2019a) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Sun M, Zhao X et al (2019b) Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol Med Rep 19:3009–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liang J, Ouyang F et al (2019c) Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys. Front Neurol 10:661

    Article  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, O’Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Feng SQ, Aa N, Geng JL et al (2017) Pharmacokinetic and metabolomic analyses of the neuroprotective effects of salvianolic acid A in a rat ischemic stroke model. Acta Pharmacol Sin 38:1435–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Li Z (2019) Polysaccharides isolated from Nostoc commune Vaucher inhibit colitis-associated colon tumorigenesis in mice and modulate gut microbiota. Food Funct 10:6873–6881

    Article  CAS  PubMed  Google Scholar 

  • He X, Cai Q, Li J, Guo W (2018) Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol. Neurosci Lett 666:78–84

    Article  CAS  PubMed  Google Scholar 

  • Houlden A, Goldrick M, Brough D et al (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson J, Willing B, Lucio M et al (2009) Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One 4:e6386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  • Ke C, Pan CW, Zhang Y, Zhu X, Zhang Y (2019) Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics 15:152

    Article  PubMed  CAS  Google Scholar 

  • Le Gall G, Noor SO, Ridgway K et al (2011) Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res 10:4208–4218

    Article  PubMed  CAS  Google Scholar 

  • Lee J, d’Aigle J, Atadja L et al (2020) Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res 127:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang X, Sun C et al (2019) Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 19:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narne P, Pandey V, Phanithi PB (2017) Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: an epigenetic connection. Mol Cell Neurosci 82:176–194

    Article  CAS  PubMed  Google Scholar 

  • Nelson JR, Raskin S (2019) The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med 131:268–277

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Fernandez-Gajardo R, Gutierrez R et al (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12:698–714

    Article  CAS  PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Roth S, Llovera G et al (2016) Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 36:7428–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  • Stanley D, Mason LJ, Mackin KE et al (2016) Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med 22:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Wu Q, Wang H et al (2020) Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. J Parenteral Enteral Nutr. https://doi.org/10.1002/jpen.1861

    Article  Google Scholar 

  • Ueno Y, Miyamoto N, Yamashiro K, Tanaka R, Hattori N (2019) Omega-3 polyunsaturated fatty acids and stroke burden. Int J Mol Sci 20:5549

    Article  CAS  PubMed Central  Google Scholar 

  • van den Munckhof ICL, Kurilshikov A, Ter Horst R et al (2018) Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 19:1719–1734

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang Q, Yu W, Chen L, Li Z (2018) Efficacy of phosphocreatine pre-administration on XIAP and Smac in ischemic penumbra of rats with focal cerebral ischemia reperfusion injury. Acta Cir Bras 33:117–124

    Article  CAS  PubMed  Google Scholar 

  • Wesley UV, Bhute VJ, Hatcher JF, Palecek SP, Dempsey RJ (2019) Local and systemic metabolic alterations in brain, plasma, and liver of rats in response to aging and ischemic stroke, as detected by nuclear magnetic resonance (NMR) spectroscopy. Neurochem Int 127:113–124

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro K, Tanaka R, Urabe T et al (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12:e0171521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan T, Chopp M, Chen J (2015) Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 31:717–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81774174) and the Postgraduate Innovation Project of Hunan University of Chinese Medicine (No. 2018CX01).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: JG and SC; acquisition of data: WW, YS, and QY; analysis and interpretation of data: WW, YS, NL, and CC; statistical analysis: CJ and WW; obtaining of funding: WW and JG; drafting of the manuscript: WW; revision of the manuscript for important intellectual content: SC and JG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shaowu Cheng or Jinwen Ge.

Ethics declarations

Ethics Approval

The experimental protocol used in this study was approved by the Animal Care and Use Committee of the Hunan Key Laboratory of Prevention and Treatment in Cardiovascular Disease, Hunan University of Chinese Medicine.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Sun, Y., Luo, N. et al. Integrated 16S rRNA Gene Sequencing and LC-MS Analysis Revealed the Interplay Between Gut Microbiota and Plasma Metabolites in Rats With Ischemic Stroke. J Mol Neurosci 71, 2095–2106 (2021). https://doi.org/10.1007/s12031-021-01828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01828-4

Keywords

Navigation