Skip to main content

Advertisement

Log in

Role of Biobanks for Cancer Research and Precision Medicine in Hepatocellular Carcinoma

  • Invited Reviews
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

Hepatocellular carcinoma (HCC) is a highly complex and deadly cancer. There is an urgent need for new and effective treatment modalities. Since the primary goal in the management of cancer is to cure and improve survival, personalized therapy can increase survival, reduce mortality rates, and improve quality of life. Biobanks hold potential in leading to breakthroughs in biomedical research and precision medicine (PM). They serve as a biorepository, collecting, processing, storing, and supplying specimens and relevant data for basic, translational, and clinical research.

Objective

We aimed to highlight the fundamental role of biobanks, harboring high quality, sustainable collections of patient samples in adequate size and variability, for developing diagnostic, prognostic, and predictive biomarkers to develop and PM approaches in the management of HCC.

Method

We obtained information from previously published articles and BBMRI directory.

Results and Conclusion

Biobanking of high-quality biospecimens along with patient clinical information provides a fundamental scientific infrastructure for basic, translational, and clinical research. Biobanks that control and eliminate pre-analytical variability of biospecimens, provide a platform to identify reliable biomarkers for the application of PM. We believe, establishing HCC biobanks will empower to underpin molecular mechanisms of HCC and generate strategies for PM. Thus, first, we will review current therapy approaches in HCC care. Then, we will summarize challenges in HCC management. Lastly, we will focus on the best practices for establishing HCC biobanking to support research, translational medicine in the light of new experimental research conducted with the aim of delivering PM for HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Thun M, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D, editors. Cancer Epidemiology and Prevention [Internet]. Oxford University Press. 2017 [cited 2021 Aug 21]. Available from: https://oxford.universitypressscholarship.com/view/10.1093/oso/9780190238667.001.0001/oso-9780190238667.

  3. Lencioni R, Llovet J. Modified RECIST (mRECIST) Assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:052–60.

    Article  CAS  Google Scholar 

  4. Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, et al. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  5. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed  Google Scholar 

  6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  7. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017;389:56–66.

    Article  CAS  Google Scholar 

  8. Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–96.

    Article  CAS  PubMed  Google Scholar 

  10. Bobolts LR. Hepatocellular carcinoma: considerations for managed care professionals. Am J Manag Care. 2020;26:S220–6.

  11. Thein H-H, Isaranuwatchai W, Campitelli MA, Feld JJ, Yoshida E, Sherman M, et al. Health care costs associated with hepatocellular carcinoma: a population-based study. Hepatology. 2013;58:1375–84.

    Article  PubMed  Google Scholar 

  12. Liu J, Dang H, Wang XW. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med. 2018;50:e416–e416.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu L-C, Hsu C-H, Hsu C, Cheng A-L. Tumor heterogeneity in hepatocellular carcinoma: facing the challenges. Liver Cancer. 2016;5:128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korhan P, Erdal E, Kandemiş E, Çokaklı M, Nart D, Yılmaz F, et al. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. In: Yang L-Y, editor. PLoS ONE. 2014;9:e105278.

  15. Bozkaya G, Korhan P, Çokaklı M, Erdal E, Sağol Ö, Karademir S, et al. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol Cancer. 2012;11:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. BioMed Res Int. 2013;2013:1–15.

    Article  Google Scholar 

  17. Tu T, Budzinska M, Maczurek A, Cheng R, Di Bartolomeo A, Warner F, et al. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci. 2014;15:9422–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu G, Jing Y, Kou X, Ye F, Gao L, Fan Q, et al. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. In: Guan X-Y, editor. PLoS ONE. 2013;8:e73312.

  19. Yang ZF, Poon RTP. Vascular changes in hepatocellular carcinoma. Anat Rec Adv Integr Anat Evol Biol. 2008;291:721–34.

    Article  CAS  Google Scholar 

  20. Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14:771–94.

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and α-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68:1451–61.

    Article  CAS  PubMed  Google Scholar 

  22. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Korhan P, Verkerk R, Critchley WR. Scientific rationale for integrative and personalised strategies for pancreatic ductal adenocarcinoma management. Integr Mol Med [Internet]. 2017 [cited 2021 Aug 22]: [4 p.]. Available from: http://www.oatext.com/scientific-rationale-for-integrative-and-personalised-strategies-for-pancreatic-ductal-adenocarcinoma-management.php.

  24. Cooke T, Reeves J, Lanigan A, Stanton P. HER2 as a prognostic and predictive marker for breast cancer. Ann Oncol. 2001;12:S23–8.

    Article  PubMed  Google Scholar 

  25. Lee J-S, Chu I-S, Heo J, Calvisi DF, Sun Z, Roskams T, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40:667–76.

    Article  CAS  PubMed  Google Scholar 

  26. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ngo C, Samuels S, Bagrintseva K, Slocker A, Hupé P, et al. From prospective biobanking to precision medicine: BIO-RAIDs – an EU study protocol in cervical cancer. BMC Cancer. 2015;15:842. http://www.raids-fp7.eu/.

  28. Salvianti F, Gelmini S, Costanza F, Mancini I, Sonnati G, Simi L, et al. The pre-analytical phase of the liquid biopsy. New Biotechnol. 2020;55:19–29.

    Article  CAS  Google Scholar 

  29. Gainotti S, Torreri P, Wang CM, Reihs R, Mueller H, Heslop E, et al. The RD-Connect Registry & Biobank Finder: a tool for sharing aggregated data and metadata among rare disease researchers. Eur J Hum Genet. 2018;26:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. OECD Organization for Economic Cooperation and Development. OECD guidelines on human biobanks and genetic research databases. Eur J Health Law. 2010;17:191–204.

    Google Scholar 

  31. Kinkorová J. Biobanks in the era of personalized medicine: objectives, challenges, and innovation: Overview. EPMA J. 2015;7:4.

    Article  PubMed  Google Scholar 

  32. Vaught J, Rogers J, Carolin T, Compton C. Biobankonomics: developing a sustainable business model approach for the formation of a human tissue biobank. JNCI Monogr. 2011;2011:24–31.

    Article  Google Scholar 

  33. Campbell LD, Astrin JJ, Brody R, Souza YD, Giri JG, Patel AA, et al. The 2018 revision of the ISBER best practices: Summary of changes and the editorial team’s development process. Biopreservation and Biobanking 2018;16:3–6.

  34. Betsou F, Bulla A, Cho SY, Clements J, Chuaqui R, Coppola D, et al. Assays for Qualification and quality stratification of clinical biospecimens used in research: a technical report from the ISBER Biospecimen Science Working Group. Biopreserv Biobank. 2016;14:398–409.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Coppola L, Cianflone A, Grimaldi AM, Incoronato M, Bevilacqua P, Messina F, et al. Biobanking in health care: evolution and future directions. J Transl Med. 2019;17:172.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paskal W, Paskal AM, Dębski T, Gryziak M, Jaworowski J. Aspects of modern biobank activity – comprehensive review. Pathol Oncol Res. 2018;24:771–85.

    Article  PubMed  Google Scholar 

  37. Lommen K, Odeh S, de Theije CC, Smits KM. Biobanking in molecular biomarker research for the early detection of cancer. Cancers. 2020;12:776.

    Article  CAS  PubMed Central  Google Scholar 

  38. Bolck HA, Pauli C, Göbel E, Mühlbauer K, Dettwiler S, Moch H, et al. Cancer sample biobanking at the next level: combining tissue with living cell repositories to promote precision medicine. Front Cell Dev Biol. 2019;7:246.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nguyen NTT, Cotton RT, Harring TR, Guiteau JJ, Gingras M-C, Wheeler DA, et al. A primer on a hepatocellular carcinoma bioresource bank using The Cancer Genome Atlas guidelines: practical issues and pitfalls. World J Surg. 2011;35:1732–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li H, Guo Y, Sun B, Chen K. Histological assessment of tumor tissue samples via the mirror image method. Biopreserv Biobank. 2015;13:25–30.

    Article  PubMed  Google Scholar 

  41. Morente MM, Mager R, Alonso S, Pezzella F, Spatz A, Knox K, et al. TuBaFrost 2: Standardising tissue collection and quality control procedures for a European virtual frozen tissue bank network. Eur J Cancer. 2006;42:2684–91.

    Article  CAS  PubMed  Google Scholar 

  42. Sandusky GE, Teheny KH, Esterman M, Hanson J, Williams SD. Quality control of human tissues-experience from the Indiana University Cancer Center-Lilly Research Labs human tissue bank. Cell Tissue Bank. 2007;8:287–95.

    Article  PubMed  Google Scholar 

  43. Zhang X, Han Q-Y, Zhao Z-S, Zhang J-G, Zhou W-J, Lin A. Biobanking of fresh-frozen gastric cancer tissues: impact of long-term storage and clinicopathological variables on RNA Quality. Biopreserv Biobank. 2019;17:58–63.

    Article  CAS  PubMed  Google Scholar 

  44. Freedman LP, Cockburn IM, Simcoe TS. The economics of reproducibility in preclinical research. PLOS Biol. 2015;13:e1002165.

  45. Malsagova K, Kopylov A, Stepanov A, Butkova T, Sinitsyna A, Izotov A, et al. Biobanks—a platform for scientific and biomedical research. Diagnostics. 2020;10:485.

    Article  CAS  PubMed Central  Google Scholar 

  46. Linton K, Howarth C, Wappett M, Newton G, Lachel C, Iqbal J, et al. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma. J Mol Diagn. 2012;14:223–32.

    Article  CAS  PubMed  Google Scholar 

  47. Song SY, Jun J, Park M, Park SK, Choi W, Park K, et al. Biobanking of fresh-frozen cancer tissue: RNA is stable independent of tissue type with less than 1 hour of cold ischemia. Biopreserv Biobank. 2018;16:28–35.

    Article  CAS  PubMed  Google Scholar 

  48. Rimassa L, Personeni N, Simonelli M, Santoro A. Tivantinib: a new promising mesenchymal–epithelial transition factor inhibitor in the treatment of hepatocellular carcinoma. Future Oncol. 2013;9:153–65.

    Article  CAS  PubMed  Google Scholar 

  49. Korhan P, Erdal E, Atabey N. miR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem Biophys Res Commun. 2014;450:1304–12.

    Article  CAS  PubMed  Google Scholar 

  50. Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018;19:682–93.

    Article  CAS  PubMed  Google Scholar 

  51. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Collins AT, Lang SH. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ. 2018;6:e5981.

  53. Koga Y, Ochiai A. Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells. 2019;8:418.

    Article  CAS  PubMed Central  Google Scholar 

  54. Ledford H. US cancer institute to overhaul tumour cell lines. Nature. 2016;530:391–391.

    Article  PubMed  Google Scholar 

  55. Xu W, Zhao Z-Y, An Q-M, Dong B, Lv A, Li C, et al. Comprehensive comparison of patient-derived xenograft models in Hepatocellular Carcinoma and metastatic Liver Cancer. Int J Med Sci. 2020;17:3073–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oh BY, Lee WY, Jung S, Hong HK, Nam D-H, Park YA, et al. Correlation between tumor engraftment in patient-derived xenograft models and clinical outcomes in colorectal cancer patients. Oncotarget. 2015;6:16059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  57. DeRose YS, Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MTW, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernardo C, Costa C, Sousa N, Amado F, Santos L. Patient-derived bladder cancer xenografts: a systematic review. Transl Res J Lab Clin Med. 2015;166:324–31.

    Google Scholar 

  59. John T, Kohler D, Pintilie M, Yanagawa N, Pham N-A, Li M, et al. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:134–41.

    Article  CAS  Google Scholar 

  60. Mattar M, McCarthy CR, Kulick AR, Qeriqi B, Guzman S, de Stanchina E. Establishing and maintaining an extensive library of patient-derived xenograft models. Front Oncol. 2018;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hu B, Li H, Guo W, Sun Y-F, Zhang X, Tang W-G, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification. Int J Cancer. 2020;146:1606–17.

    Article  CAS  PubMed  Google Scholar 

  62. Cheung PFY, Yip CW, Ng LWC, Lo KW, Chow C, Chan KF, et al. Comprehensive characterization of the patient-derived xenograft and the paralleled primary hepatocellular carcinoma cell line. Cancer Cell Int. 2016;16:41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Szadvari I, Krizanova O, Babula P. Athymic Nude mice as an experimental model for cancer treatment. Physiol Res. 2016;S441–53.

  64. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    Article  CAS  PubMed  Google Scholar 

  65. Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–68.

    Article  CAS  PubMed  Google Scholar 

  66. Choi Y, Lee S, Kim K, Kim S-H, Chung Y-J, Lee C. Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med. 2018;50:99.

    Article  PubMed Central  Google Scholar 

  67. Lallo A, Schenk MW, Frese KK, Blackhall F, Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res [Internet]. AME Publishing Company. 2017 [cited 2021 Aug 22]: [6 p.]. Available from: https://tlcr.amegroups.com/article/view/14974.

  68. Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res. American Association for Cancer Research. 2019;7:1267–79.

  69. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 2013;5:73.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guerrera F, Tabbò F, Bessone L, Maletta F, Gaudiano M, Ercole E, et al. The influence of tissue ischemia time on RNA integrity and patient-derived xenografts (PDX) engraftment rate in a non-small cell lung cancer (NSCLC) biobank. PloS One. 2016;11:e0145100.

  71. European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL–EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

  72. Blumer T, Fofana I, Matter MS, Wang X, Montazeri H, Calabrese D, et al. Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors. Hepatol Commun. 2019;3:971–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kissel M, Berndt S, Fiebig L, Kling S, Ji Q, Gu Q, et al. Antitumor effects of regorafenib and sorafenib in preclinical models of hepatocellular carcinoma. Oncotarget. 2017;8:107096–108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu Y, Wang J, Zheng X, Chen Y, Huang M, Huang Q, et al. Establishment and preclinical therapy of patient-derived hepatocellular carcinoma xenograft model. Immunol Lett. 2020;223:33–43.

    Article  CAS  PubMed  Google Scholar 

  75. Tischfield DJ, Ackerman D, Noji M, Chen JX, Johnson O, Perkons NR, et al. Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies. Sci Rep. 2019;9:10546.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bresnahan E, Ramadori P, Heikenwalder M, Zender L, Lujambio A. Novel patient-derived preclinical models of liver cancer. J Hepatol Elsevier. 2020;72:239–49.

    Article  CAS  Google Scholar 

  77. Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G, Roz L. Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J Biomed Biotechnol. 2012;2012:568567.

  78. Xu W, Yang X-W, Zhao Z-Y, Dong B, Guan X-Y, Tian X-Y, et al. Establishment of pancreatic cancer patient-derived xenograft models and comparison of the differences among the generations. Am J Transl Res. 2019;11:3128–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ben-David U, Ha G, Tseng Y-Y, Greenwald NF, Oh C, Shih J, et al. Patient-derived xenografts undergo murine-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu X, Wang S, Zhou J, Chen J, Huang Y, Kumari R, et al. A living biobank of matched pairs of patient-derived xenografts and organoids for cancer pharmacology [Internet]. 2021 [cited 2021 Aug 22]. Available from: https://www.researchsquare.com/article/rs-63366/v1.

  81. Malaney P, Nicosia SV, Davé V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014;344:1–12.

    Article  CAS  PubMed  Google Scholar 

  82. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. American Association for Cancer Research. 2014;4:998–1013.

  83. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24:1363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386.e10.

    Article  CAS  PubMed  Google Scholar 

  87. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Annaratone L, De Palma G, Bonizzi G, Sapino A, Botti G, Berrino E, et al. Basic principles of biobanking: from biological samples to precision medicine for patients. Virchows Arch. 2021;479:233–46.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Holub P, Kohlmayer F, Prasser F, Mayrhofer MTh, Schlünder I, Martin GM, et al. Enhancing reuse of data and biological material in medical research: from FAIR to FAIR-health. Biopreservation Biobanking. 2018;16:97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang L, Chen Y, Yu C, Shen B. Biobanks and their clinical application and informatics challenges. In: Shen B, Tang H, Jiang X, editors. Transl Biomed Inform [Internet]. Singapore: Springer Singapore. 2016 [cited 2021 Aug 30]: [241–57 p.]. Available from: http://link.springer.com/10.1007/978-981-10-1503-8_10

  91. Suh KS, Sarojini S, Youssif M, Nalley K, Milinovikj N, Elloumi F, et al. Tissue banking, bioinformatics, and electronic medical records: the front-end requirements for personalized medicine. J Oncol. 2013;2013:368751.

  92. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. Public Library of Science. 2015;12:e1001779.

  93. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nøst TH, Alcala K, Urbarova I, Byrne KS, Guida F, Sandanger TM, et al. Systemic inflammation markers and cancer incidence in the UK Biobank. Eur J Epidemiol [Internet]. 2021 [cited 2021 Aug 31]. Available from: https://link.springer.com/10.1007/s10654-021-00752-6.

  95. Kennedy OJ, Fallowfield JA, Poole R, Hayes PC, Parkes J, Roderick PJ. All coffee types decrease the risk of adverse clinical outcomes in chronic liver disease: a UK Biobank study. BMC Public Health. 2021;21:970.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Matzke LA, Watson PH. Biobanking for cancer biomarker research: issues and solutions. Biomark Insights. 2020;15:117727192096552.

    Article  Google Scholar 

  97. The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

  98. Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327-1341.e23.

    Article  Google Scholar 

  99. Bertolet A, Wals A, Miras H, Macías J. Organic generation of real-world real-time data for clinical evidence in radiation oncology. Int J Med Inf. 2020;144:104301.

  100. Marko-Varga G, Végvári Á, Welinder C, Lindberg H, Rezeli M, Edula G, et al. Standardization and utilization of biobank resources in clinical protein science with examples of emerging applications. J Proteome Res. 2012;11:5124–34.

    Article  CAS  PubMed  Google Scholar 

  101. Zisis K. Biobanking with big data: a need for developing “big data metrics.” Biopreservation Biobanking. 2016;14:450–1.

    Article  PubMed  Google Scholar 

  102. Norlin L, Fransson MN, Eriksson M, Merino-Martinez R, Anderberg M, Kurtovic S, et al. A minimum data set for sharing biobank samples, information, and data: MIABIS. Biopreservation Biobanking. 2012;10:343–8.

    Article  PubMed  Google Scholar 

  103. Ferretti Y, Miyoshi NSB, Silva WA, Felipe JC. BioBankWarden: a web-based system to support translational cancer research by managing clinical and biomaterial data. Comput Biol Med. 2017;84:254–61.

    Article  PubMed  Google Scholar 

  104. Dowst H, Pew B, Watkins C, McOwiti A, Barney J, Qu S, et al. Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics. 2015;31:1655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ritchie MD, Moore JH, Kim JH. Translational bioinformatics: biobanks in the precision medicine era. Biocomput 2020 [Internet]. Kohala Coast, Hawaii, USA: World scientific. 2019 [cited 2021 Aug 30]: [743–7 p.]. Available from: https://www.worldscientific.com/doi/abs/10.1142/9789811215636_0067.

Download references

Author information

Authors and Affiliations

Authors

Contributions

NA conceived and planned the conceptional framework of the manuscript. NA, PK, and STA wrote the manuscript with the contribution from all authors. YY and YOI contributed to the living biobank and bioinformatics parts of the manuscript, respectively. NA and STA prepared the figures and the tables. All authors discussed the theoretical framework of the manuscript and revised it critically.

Corresponding author

Correspondence to Neşe Atabey.

Ethics declarations

Ethical Issues

There are no ethical issues for this manuscript.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korhan, P., Tercan Avcı, S., Yılmaz, Y. et al. Role of Biobanks for Cancer Research and Precision Medicine in Hepatocellular Carcinoma. J Gastrointest Canc 52, 1232–1247 (2021). https://doi.org/10.1007/s12029-021-00759-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00759-y

Keywords

Navigation