Skip to main content

Advertisement

Log in

[Cuproptosis-related immune gene signature predicts clinical benefits from anti-PD-1/PD-L1 therapy in non-small-cell lung cancer

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Non-small-cell lung cancer (NSCLC) remains the major cause of cancer-related death. Immune checkpoint inhibition has become the cornerstone treatment for NSCLC. Cuproptosis is a newly identified form of cell death relying on mitochondrial respiration that might play a role in shaping tumor immune microenvironment (TIME). The clinical significance of cuproptosis-related genes (CRGs) remains unclear and warrant investigation. The current study extracted RNA sequencing profiles and corresponding clinical information from six aggregated datasets from the Gene Expression Omnibus (GEO) repository as the training set, and from The Cancer Genome Atlas (TCGA) database as the testing set. Cuproptosis-related immune genes (CRIMGs) were obtained through coexpression analysis, univariate Cox regression analysis, and LASSO analysis for overall survival (OS) association analysis. Consensus clustering was employed to divide the subjects into clusters. Stepwise multivariate Cox regression was used to establish the prognostic CRIMG_score from the CRIMGs. A 17-gene prediction signature was established that informed patients’ OS both in the training and testing datasets (p < 0.001). The predictive value of the signature in terms of immunotherapeutic responses was assessed in two publicly available NSCLC immunotherapy datasets (POPLAR and OAK studies) and an internal dataset from Sun Yat-sen University Cancer Center (ORIENT-11 study). Patients in the high-risk group displayed worse survival, a characteristic suppressive tumor immune microenvironment, and low immunotherapeutic benefits compared to those in the low-risk group. Collectively, the CRIMG_score established herein could serve as a promising indicator of prognosis and immunotherapeutic response in patients with NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

RNA-sequence were from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE101929/GSE29013/GSE30219/GSE31210/GSE37745/GSE50081). TPM-normalized counts from RNAseq data and Clinical data in POPLAR and OAK cohorts are available under restricted access in the European Genome-Phenome Archive under accession numbers EGAS00001004343 and EGAS00001005013, respectively (https://ega-archive.org/).

The remaining data analyzed during this study are included within the published article and its supplementary information files. Data for ORIENT-11 from Sun Yat-sen University Cancer Center was available on reasonable request by the corresponding authors.

Abbreviations

CRGs :

Cuproptosis-related genes

CRIMG :

Cuprotosis-related immune genes

TIME :

Tumor immune microenvironment

PCA :

Principal component analysis

OS :

Overall survival

NSCLC :

Non-small-cell lung cancer

TCA :

Tricarboxylic acid

ICI :

Immune checkpoint inhibitor

ICD :

Inflammatory cell deaths

DAMP :

Damage-associated molecular patterns

GEO :

Gene Expression Omnibus

TCGA :

The Cancer Genome Atlas

CDF :

Cumulative distribution function

ssGSEA :

Single-sample gene set enrichment analysis

GSEA :

Gene set enrichment analyses

FDR :

False discovery rate

KEGG :

Kyoto Encyclopedia of Genes and Genomes

GO :

Gene Ontology

BP :

Biological process

MF :

Molecular function

CC :

Cellular component

ROC :

Receiver operating characteristic curve

LDH :

Lactate dehydrogenase

References

  1. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61. https://doi.org/10.1126/science.abf0529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Culotta V. Cell biology of copper. J Biol Inorg Chem. 2010;15(1):1–2. https://doi.org/10.1007/s00775-009-0601-x.

    Article  CAS  PubMed  Google Scholar 

  3. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868(2): 118893. https://doi.org/10.1016/j.bbamcr.2020.118893.

    Article  CAS  PubMed  Google Scholar 

  4. Li Y. Copper homeostasis: emerging target for cancer treatment. IUBMB Life. 2020;72(9):1900–8. https://doi.org/10.1002/iub.2341.

    Article  CAS  PubMed  Google Scholar 

  5. Han J, Hu Y, Liu S, Jiang J, Wang H. A newly established cuproptosis-associated long non-coding RNA signature for predicting prognosis and indicating immune microenvironment features in soft tissue sarcoma. J Oncol. 2022;2022:8489387. https://doi.org/10.1155/2022/8489387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lv H, Liu X, Zeng X, Liu Y, Zhang C, Zhang Q, Xu J. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma. Front Pharmacol. 2022;13: 930041. https://doi.org/10.3389/fphar.2022.930041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu S, Liu D, Chang T, Wen X, Ma S, Sun G, Wang L, Chen S, Xu Y, Zhang H. Cuproptosis-associated lncRNA establishes new prognostic profile and predicts immunotherapy response in clear cell renal cell carcinoma. Front Genet. 2022;13: 938259. https://doi.org/10.3389/fgene.2022.938259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji ZH, Ren WZ, Wang HQ, Gao W, Yuan B. Molecular subtyping based on cuproptosis-related genes and characterization of tumor microenvironment infiltration in kidney renal clear cell carcinoma. Front Oncol. 2022;12: 919083. https://doi.org/10.3389/fonc.2022.919083.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma. Front Immunol. 2022;13: 925618. https://doi.org/10.3389/fimmu.2022.925618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang G, Sun J, Zhang X. A novel Cuproptosis-related lncRNA signature to predict prognosis in hepatocellular carcinoma. Sci Rep. 2022;12(1):11325. https://doi.org/10.1038/s41598-022-15251-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenbaum SR, Wilski NA, Aplin AE. Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov. 2021;11(2):266–81. https://doi.org/10.1158/2159-8290.CD-20-0805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):110. https://doi.org/10.1186/s13045-020-00946-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang GM, Tan Y, Wang H, Peng L, Chen HT, Meng XJ, Li LL, Liu Y, Li WF, Shan H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer. 2019;18(1):17. https://doi.org/10.1186/s12943-019-0944-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang HC, Deng SH, Pi YN, Guo JN, Xi H, Shi X, Yang XF, Zhang BM, Xue WN, Cui BB, et al. Identification and validation in a novel quantification system of ferroptosis patterns for the prediction of prognosis and immunotherapy response in left- and right-sided colon cancer. Front Immunol. 2022;13: 855849. https://doi.org/10.3389/fimmu.2022.855849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YY, Shi LY, Zhu ZT, Wang QJ. A new pyroptosis model can predict the immunotherapy response and immune microenvironment characteristics and prognosis of patients with cutaneous melanoma based on TCGA and GEO databases. Ann Transl Med. 2022;10(6):353. https://doi.org/10.21037/atm-22-1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song W, Ren J, Xiang R, Kong C, Fu T. Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer. Oncoimmunology. 2021;10(1):1987636. https://doi.org/10.1080/2162402X.2021.1987636.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Luo X, Wang Q, Chen J, Zhang X, Li Y, Chen Y, Li X, Han S. A novel necroptosis-related lncRNA signature predicts the prognosis of lung adenocarcinoma. Front Genet. 2022;13: 862741. https://doi.org/10.3389/fgene.2022.862741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer. 2020;20(9):516–31. https://doi.org/10.1038/s41568-020-0273-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitchell KA, Zingone A, Toulabi L, Boeckelman J, Ryan BM. Comparative transcriptome profiling reveals coding and noncoding RNA differences in NSCLC from African Americans and European Americans. Clin Cancer Res. 2017;23(23):7412–25. https://doi.org/10.1158/1078-0432.CCR-17-0527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, Girard L, Erickson HS, Roth J, Heymach JV, et al. Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients. Clin Cancer Res. 2011;17(17):5705–14. https://doi.org/10.1158/1078-0432.CCR-11-0196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5(186):166r–86r. https://doi.org/10.1126/scitranslmed.3005723.

    Article  CAS  Google Scholar 

  22. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012;72(1):100–11. https://doi.org/10.1158/0008-5472.CAN-11-1403.

    Article  CAS  PubMed  Google Scholar 

  23. Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Ponten F, et al. Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res. 2013;19(1):194–204. https://doi.org/10.1158/1078-0432.CCR-12-1139.

    Article  CAS  PubMed  Google Scholar 

  24. Der SD, Sykes J, Pintilie M, Zhu CQ, Strumpf D, Liu N, Jurisica I, Shepherd FA, Tsao MS. Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9(1):59–64. https://doi.org/10.1097/JTO.0000000000000042.

    Article  CAS  PubMed  Google Scholar 

  25. Mahon RN, Ghita M, Hugo GD, Weiss E. ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets. Phys Med Biol. 2020;65(1):15010. https://doi.org/10.1088/1361-6560/ab6177.

    Article  CAS  Google Scholar 

  26. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, Mcpherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, et al. Erratum to: A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):181. https://doi.org/10.1186/s13059-016-1047-4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou YT, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–30. https://doi.org/10.1016/j.immuni.2018.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li B, Cui Y, Nambiar DK, Sunwoo JB, Li R. The immune subtypes and landscape of squamous cell carcinoma. Clin Cancer Res. 2019;25(12):3528–37. https://doi.org/10.1158/1078-0432.CCR-18-4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Wang Z, Fang J, Yu Q, Han B, Cang S, Chen G, Mei X, Yang Z, Ma R, et al. Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (Oncology pRogram by InnovENT anti-PD-1-11). J Thorac Oncol. 2020;15(10):1636–46. https://doi.org/10.1016/j.jtho.2020.07.014.

    Article  CAS  PubMed  Google Scholar 

  30. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46. https://doi.org/10.1016/S0140-6736(16)00587-0.

    Article  CAS  PubMed  Google Scholar 

  31. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65. https://doi.org/10.1016/S0140-6736(16)32517-X.

    Article  PubMed  Google Scholar 

  32. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautes-Fridman C, Fridman WH, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218. https://doi.org/10.1186/s13059-016-1070-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017;6:e26476. https://doi.org/10.7554/eLife.26476.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. https://doi.org/10.1093/nar/gkaa407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. https://doi.org/10.1186/s13059-017-1349-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, Loncova Z, Posch W, Wilflingseder D, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34. https://doi.org/10.1186/s13073-019-0638-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer. 2020;8(2):e000966. https://doi.org/10.1136/jitc-2020-000966.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68. https://doi.org/10.1038/s41577-020-0306-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. External cues to drive B cell function towards immunotherapy. Acta Biomater. 2021;133:222–30. https://doi.org/10.1016/j.actbio.2021.02.026.

    Article  CAS  PubMed  Google Scholar 

  41. Akbari H, Taghizadeh-Hesary F, Bahadori M. Mitochondria determine response to anti-programmed cell death protein-1 (anti-PD-1) immunotherapy: an evidence-based hypothesis. Mitochondrion. 2022;62:151–8. https://doi.org/10.1016/j.mito.2021.12.001.

    Article  CAS  PubMed  Google Scholar 

  42. Haikala HM, Anttila JM, Marques E, Raatikainen T, Ilander M, Hakanen H, Ala-Hongisto H, Savelius M, Balboa D, Von Eyss B, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10(1):620. https://doi.org/10.1038/s41467-019-08541-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu J, Powis DTC, Cane S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst AM, Liljestrom P, Uyttenhove C, Van den Eynde BJ. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun. 2017;8(1):1404. https://doi.org/10.1038/s41467-017-00784-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, Denicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13. https://doi.org/10.1038/s41568-021-00417-2.

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4. https://doi.org/10.1038/s41586-019-1170-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F, Liu Z. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421–6. https://doi.org/10.1038/s41586-020-2079-1.

    Article  CAS  PubMed  Google Scholar 

  47. O’Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, Robert C, Schachter J, Testori A, Mackiewicz J, et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013;31(9):1211–8. https://doi.org/10.1200/JCO.2012.44.5585.

    Article  CAS  PubMed  Google Scholar 

  48. Wagner NB, Forschner A, Leiter U, Garbe C, Eigentler TK. S100B and LDH as early prognostic markers for response and overall survival in melanoma patients treated with anti-PD-1 or combined anti-PD-1 plus anti-CTLA-4 antibodies. Br J Cancer. 2018;119(3):339–46. https://doi.org/10.1038/s41416-018-0167-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W, Mehra N. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology. 2020;9(1):1731942. https://doi.org/10.1080/2162402X.2020.1731942.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (grants numbers 81972898, 8217102281, 82072558); the Natural Science Foundation of Guangdong Province (2019A1515011090); and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22ykqb15).

Author information

Authors and Affiliations

Authors

Contributions

L. L. F, F. S., and S. D. H. designed the study. Z. L. and Y. Y. P. provided the in-house data. L. L. F. and A. L. L. draft the manuscript and designed the figures. W. D., F. S., and L. N. H. revised the manuscript. X. Y. Z., Y. X. W., and Y. X. Z. collected the clinical information of immunotherapy cohorts. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Shaodong Hong.

Ethics declarations

Ethics approval and consent to participate

Study protocol for the ORIENT-11 clinical trial was approved by the respective institutional review boards and ethics committees and all participants provided written informed consent. Ethics approval and patient informed consents for TCGA, GEO, and EGA were waived due to their public availability.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Yunpeng, Zhang Li, and Shaodong Hong were co-communicators.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 790 KB)

Supplementary file2 (XLSX 1537 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Li, A., Fu, S. et al. [Cuproptosis-related immune gene signature predicts clinical benefits from anti-PD-1/PD-L1 therapy in non-small-cell lung cancer. Immunol Res 71, 213–228 (2023). https://doi.org/10.1007/s12026-022-09335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09335-3

Keywords

Navigation