Skip to main content
Log in

Clinical and radiographic characteristics of patients with non-functioning pituitary adenomas categorized according to their serum prolactin concentration: novel predictors of postoperative transient diabetes insipidus following surgery

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Non-functioning pituitary adenomas (NFPAs) are often associated with hyperprolactinemia, which is known as the “stalk effect”. However, the relationships between hyperprolactinemia and the radiographic characteristics of the tumor that affects the pituitary stalk have not been well characterized. We aimed to identify the differences in the clinical and radiographic characteristics of patients with NFPA, with and without hyperprolactinemia.

Methods

We enrolled 107 patients with NFPA and allocated them to hyperprolactinemia and non-hyperprolactinemia groups using two different cut-off values: (1) the upper limit of the normal reference range, adjusted for sex and menopausal status, and (2) the upper quartile across the cohort, and compared their clinical and radiographic characteristics. These analyses were conducted to clarify the relationship between the “stalk effect” and the postoperative change in antidiuretic hormone secretion.

Results

The specific radiographic characteristics of the patients included the presence of a cystic or hemorrhagic tumor and the presence of pituitary stalk deviation, which were more frequent in the patients with hyperprolactinemia. Interestingly, the incidence of postoperative transient diabetes insipidus was statistically significantly higher in the hyperprolactinemia group (≥40 ng/mL) and in the group with radiologic evidence of stalk deviation, which were shown to be independent risk factors on multivariate analysis.

Conclusion

The presence of a “stalk effect” was associated with a higher risk of postoperative transient diabetes insipidus, reflecting perioperative pituitary stalk dysfunction following NFPA surgery, especially in patients with serum prolactin concentrations ≥40 ng/mL and radiologic evidence of stalk deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.B.S. Lopes, Pathology of prolactinomas: any predictive value? Pituitary 23, 3–8 (2020). https://doi.org/10.1007/s11102-019-00997-1

    Article  PubMed  Google Scholar 

  2. G. Ntali, J.A. Wass, Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21, 111–118 (2018). https://doi.org/10.1007/s11102-018-0869-3

    Article  PubMed  Google Scholar 

  3. N. Ben-Jonathan, R. Hnasko, Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev. 22, 724–763 (2001). https://doi.org/10.1210/edrv.22.6.0451

    Article  CAS  PubMed  Google Scholar 

  4. J. Chahal, J. Schlechte, Hyperprolactinemia. Pituitary 11, 141–146 (2008). https://doi.org/10.1007/s11102-008-0107-5

    Article  CAS  PubMed  Google Scholar 

  5. I. Samperi, K. Lithgow, N. Karavitaki, Hyperprolactinemia. J. Clin. Med. 8, 2203 (2019). https://doi.org/10.3390/jcm8122203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Vilar, C.F. Vilar, R. Lyra, M.D.C. Freitas, Pitfalls in the diagnostic evaluation of hyperprolactinemia. Neuroendocrinology 109, 7–19 (2019). https://doi.org/10.1159/000499694

    Article  CAS  PubMed  Google Scholar 

  7. S. Melmed, F.F. Casanueva, A.R. Hoffman, D.L. Kleinberg, V.M. Montori, J.A. Schlechte, J.A. Wass, Endocrine Society: Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011). https://doi.org/10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  8. S. Petersenn, M. Fleseriu, F.F. Casanueva, A. Giustina, N. Biermasz, B.M.K. Biller, M. Bronstein, P. Chanson, H. Fukuoka, M. Gadelha, Y. Greenman, M. Gurnell, K.K.Y. Ho, J. Honegger, A.G. Ioachimescu, U.B. Kaiser, N. Karavitaki, L. Katznelson, M. Lodish, D. Maiter, H.J. Marcus, A. McCormack, M. Molitch, C.A. Muir, S. Neggers, A.M. Pereira, R. Pivonello, K. Post, G. Raverot, R. Salvatori, S.L. Samson, I. Shimon, J. Spencer-Segal, G. Vila, J. Wass, S. Melmed, Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat. Rev. Endocrinol. 19, 722–740 (2023). https://doi.org/10.1038/s41574-023-00886-5

    Article  PubMed  Google Scholar 

  9. M. Fleseriu, M.E. Bodach, L.M. Tumialan, V. Bonert, N.M. Oyesiku, C.G. Patil, Z. Litvack, M.K. Aghi, G. Zada, Congress of neurosurgical surgeons systematic review and evidence-based guideline for pretreatment endocrine evaluation of patients with nonfunctioning pituitary adenomas. Neurosurgery 79, E527–E529 (2016). https://doi.org/10.1227/NEU.0000000000001387

    Article  PubMed  Google Scholar 

  10. F. Zhang, Y. Huang, C. Ding, G. Huang, S. Wang, The prevalence of hyperprolactinemia in non-functioning pituitary macroadenomas. Int. J. Clin. Exp. Med 8, 18990–18997 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. F. de Vries, D.J. Lobatto, M.J.T. Verstegen, W.R. van Furth, A.M. Pereira, N.R. Biermasz, Postoperative diabetes insipidus: how to define and grade this complication? Pituitary 24, 284–291 (2021). https://doi.org/10.1007/s11102-020-01083-7

    Article  PubMed  Google Scholar 

  12. E.K. Brooks, W.J. Inder, Disorders of salt and water balance after pituitary surgery. J. Clin. Endocrinol. Metab. 108, 198–208 (2022). https://doi.org/10.1210/clinem/dgac622

    Article  PubMed  PubMed Central  Google Scholar 

  13. S.S.M. Anwar, K. Hilal, A. Khan, A. Ahmad, Magnetic resonance imaging grading of pituitary macroadenoma – SIPAP classification revised. Eur. J. Radiol. Open. 10, 100486 (2023). https://doi.org/10.1016/j.ejro.2023.100486

    Article  PubMed  PubMed Central  Google Scholar 

  14. B. Cabuk, I. Anik, S. Kokturk, S. Ceylan, S. Ceylan, Anatomic and histologic features of diaphragma sellae that effects the suprasellar extension. J. Clin. Neurosci. 71, 234–244 (2020). https://doi.org/10.1016/j.jcon.2019.11.014

    Article  PubMed  Google Scholar 

  15. S. Gulsen, A.H. Dinc, M. Unal, N. Cantürk, N. Altinors, Characterization of the anatomic location of the pituitary stalk and its relationship to the dorsum sellae, tuberculum sellae and chiasmatic cistern. J. Korean Neurosurg. Soc. 47, 169–173 (2010). https://doi.org/10.3340/jkns.2010.47.3.169

    Article  PubMed  PubMed Central  Google Scholar 

  16. E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33, 610–617 (1993). https://doi.org/10.1227/00006123-199310000-00008. discussion 617-618

    Article  CAS  PubMed  Google Scholar 

  17. L. Lyu, S. Yin, Y. Hu, C. Chen, Y. Jiang, Y. Yu, W. Ma, Z. Wang, S. Jiang, P. Zhou, Hyperprolactinemia in clinical non-functional pituitary macroadenomas: A STROBE-compliant study. Medicine 99, e22673 (2020). https://doi.org/10.1097/M.D.0000000000022673

    Article  PubMed  PubMed Central  Google Scholar 

  18. S.S. Park, J.H. Kim, Y.H. Kim, J.H. Lee, Y.S. Dho, C.S. Shin, Clinical and radiographic characteristics related to hyperprolactinemia in nonfunctioning pituitary adenomas. World Neurosurg. 119, e1035–e1040 (2018). https://doi.org/10.1016/j.wneu.2018.08.068

    Article  PubMed  Google Scholar 

  19. M. Bergsneider, L. Mirsadraei, W.H. Yong, N. Salamon, M. Linetsky, M.B. Wang, D.L. McArthur, A.P. Heaney, The pituitary stalk effect: is it a passing phenomenon? J. Neurooncol. 117, 477–484 (2014). https://doi.org/10.1007/s11060-014-1386-5

    Article  PubMed  Google Scholar 

  20. A. Kruse, J. Astrup, C. Gyldensted, G.E. Cold, Hyperprolactinaemia in patients with pituitary adenomas. The pituitary stalk compression syndrome. Br. J. Neurosurg. 9, 453–457 (1995). https://doi.org/10.1080/02688699550041089

    Article  CAS  PubMed  Google Scholar 

  21. M.V. Smith, E.R. Laws Jr, Magnetic resonance imaging measurements of pituitary stalk compression and deviation in patients with nonprolactin-secreting intrasellar and parasellar tumors: lack of correlation with serum prolactin levels. Neurosurgery 34, 834–839 (1994). https://doi.org/10.1227/00006123-199405000-00007. discussion 839

    Article  CAS  PubMed  Google Scholar 

  22. B.M. Arafah, D. Prunty, J. Ybarra, M.L. Hlavin, W.R. Selman, The dominant role of increased intrasellar pressure in the pathogenesis of hypopituitarism, hyperprolactinemia, and headaches in patients with pituitary adenomas. J. Clin. Endocrinol. Metab. 85, 1789–1793 (2000). https://doi.org/10.1210/jcem.85.5.6611

    Article  CAS  PubMed  Google Scholar 

  23. P.D. Lees, J.D. Pickard, Hyperprolactinemia intrasellar pituitary tissue pressure, and the pituitary stalk compression syndrome. J. Neurosurg. 67, 192–196 (1987). https://doi.org/10.3171/jns.1987.67.2.0192

    Article  CAS  PubMed  Google Scholar 

  24. G. Hildebrandt, H.W. Mueller, H. Stracke, Z.M. Rap, N. Klung, Different types of postoperative diabetes insipidus and the relation to basal and stimulated serum prolactin levels in patients with hypothalamo-hypophyseal tumorous lesions. Acta Neurochir. 104, 110–120 (1990). https://doi.org/10.1007/BF01842828

    Article  CAS  PubMed  Google Scholar 

  25. A.M. Ajlan, S.B. Abdulqader, A.S. Achrol, Y. Aljamaan, A.H. Feroze, L. Katznelson, G.R. Harsh, Diabetes insipidus following endoscopic transsphenoidal surgery for pituitary adenoma. J. Neurol. Surg. B. Skull Base. 79, 117–122 (2018). https://doi.org/10.1055/s-0037-1604363

    Article  PubMed  Google Scholar 

  26. M. Araujo-Castro, F. Mariño-Sánchez, A. Acitores Cancela, A. García Fernández, S. García Duque, V. Rodríguez Berrocal, Is it possible to predict the development of diabetes insipidus after pituitary surgery? Study of 241 endoscopic transsphenoidal pituitary surgeries. J. Endocrinol. Invest 44, 1457–1464 (2021). https://doi.org/10.1007/s40618-020-01448-6

    Article  CAS  PubMed  Google Scholar 

  27. W.T. Burke, D.J. Cote, D.L. Penn, S. Luliano, K. McMillen, E.R. Laws, Diabetes insipidus after endoscopic transsphenoidal surgery. Neurosurgery 87, 949–955 (2020). https://doi.org/10.1093/neuros/nyaa148

    Article  PubMed  Google Scholar 

  28. J. Hensen, A.H.R. Fahlbusch, M. Meyer, M. Boehnert, M. Buchfelder, Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin. Endocrinol. 50, 431–439 (1999). https://doi.org/10.1046/j.1365-2265.1999.00666.x

    Article  CAS  Google Scholar 

  29. R.S. Joshi, M.P. Pereira, R.C. Osorio, T. Oh, A.F. Haddad, K.M. Pereira, K.C. Donohue, Z. Peeran, S. Sundhir, S. Jain, A. Beniwal, A. Chandra, S.J. Han, J.D. Rolston, P.V. Theodosopoulos, S. Kunwar, L.S. Blevins Jr, M.K. Aghi, Identifying risk factors for postoperative diabetes insipidus in more than 2500 patients undergoidng transsphenoidal surgery: a single-institution experience. J. Neurosurg. 137, 647–657 (2022). https://doi.org/10.3171/2021.11,JSN211260

    Article  Google Scholar 

  30. E.L. Sorba, V.E. Staartjes, S. Voglis, L. Tosic, G. Brandi, O. Tschopp, C. Serra, L. Regli, Diabetes insipidus and syndrome of inappropriate antidiuresis (SIADH) after pituitary surgery: incidence and risk factors. Neurosurg. Rev. 44, 1503–1511 (2021). https://doi.org/10.1007/s10143-020-01340-0

    Article  PubMed  Google Scholar 

  31. M.E. Yasuda, D. Renedo, S. Sosa, K. Danilowicz, R. Recalde, R. Zaninovich, G. Abbati, A. Cervio, S. Giovannini, J. Villalonga, L. Ulloque-Caamaño, K. Reddy, M. Socolovsky, A. Campero, Risk factors related to transient diabetes insipidus development following transsphenoidal pituitary adenoma resection: A multicentric study. World Neurosurg. 175, e636–e643 (2023). https://doi.org/10.1016/j.wneu.2023.03.150

    Article  PubMed  Google Scholar 

  32. P. Nayak, A.S. Montaser, J. Hu, D.M. Prevedello, L.S. Kirschner, L. Ghalib, Predictors of postoperative diabetes insipidus following endoscopic resection of pituitary adenomas. J. Endocr. Soc. 2, 1010–1019 (2018). https://doi.org/10.1210/js.2018-00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Schreckinger, B. Walker, J. Knepper, M. Hornyak, D. Hong, J.-M. Kim, A. Folbe, M. Guthikonda, S. Mittal, N.J. Szerlip, Post-operative diabetes insipidus after endoscopic transsphenoidal surgery. Pituitary 16, 445–451 (2013). https://doi.org/10.1007/s11102-012-0453-1

    Article  PubMed  Google Scholar 

  34. N. Alidaei, G. Sharifi, Z. Davoudi, Importance of intraoperative factors in postoperative arginine vasopressin deficiency after pituitary adenoma surgery. Endocr. Pract. 30, 253–258 (2024). https://doi.org/10.1016/j.eprac.2023.12.003

    Article  PubMed  Google Scholar 

  35. E.C. Nemergut, Z. Zuo, J.A. Jane Jr, E.R. Laws Jr, Predictors of diabetes insipidus after transsphenoidal surgery: a review of 881 patients. J. Neurosurg. 103, 448–454 (2005). https://doi.org/10.3171/jns.2005.103.3.0448

    Article  PubMed  Google Scholar 

  36. D.G. Sigounas, J.L. Sharpless, D.M.L. Cheng, T.G. Johnson, B.A. Senior, M.G. Ewend, Predictors and incidence of central diabetes insipidus after endoscopic pituitary surgery. Neurosurgery 62, 71–78 (2008). https://doi.org/10.1227/01.NEU.0000311063.10745.D8

    Article  PubMed  Google Scholar 

  37. M. Tanji, Y. Mineharu, M. Kikuchi, T. Nakagawa, T. Sakamoto, M. Yamashita, M. Matsunaga, F. Kuwata, Y. Kitada, Y. Terada, Y. Arakawa, K. Yoshida, H. Kataoka, S. Miyamoto, Intraoperative cerebrospinal fluid leak graded by Esposito grade is a predictor for diabetes insipidus after endoscopic endonasal pituitary adenoma resection. World Neurosurg. 158, e896–e902 (2022). https://doi.org/10.1016/j.wneu.2021.11.090

    Article  PubMed  Google Scholar 

  38. O. Alexopoulou, V. Everard, M. Etoa, E. Fomekong, S. Gaillard, F. Parker, C. Raftopoulos, P. Chanson, D. Maiter, Outcome of pituitary hormone deficits after surgical treatment of nonfunctioning pituitary macroadenomas. Endocrine 73, 166–176 (2021). https://doi.org/10.1007/s12020-021-02701-5

    Article  CAS  PubMed  Google Scholar 

  39. A.N. Hoang, B.G. McGahan, S. Cua, S.T. Magill, P. Nayak, A.S. Montaser, L. Ghalib, L.M. Prevedello, D.A. Hardesty, R.L. Carrau, D.M. Prevedello, Pituitary stalk stretch predicts postoperative diabetes insipidus after pituitary macroadenoma transsphenoidal resection. Oper. Neurosurg. 24, 248–255 (2023). https://doi.org/10.1227/ons.0000000000000501

    Article  Google Scholar 

  40. K. Lin, K. Fan, S. Mu, S. Wang, Change in cephalocaudal tumor cavity diameter after transsphenoidal surgery is a predictor of diabetes insipidus in pituitary adenoma. Eur. J. Med. Res. 27, 72 (2022). https://doi.org/10.1186/s40001-022-00700-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. J. Ma, P. Gooderham, R. Akagami, S. Makarenko, Correlation of pituitary descent and diabetes insipidus after transsphenoidal pituitary macroadenoma resection. Neurosurgery 92, 1269–1275 (2023). https://doi.org/10.1227/neu.0000000000002360

    Article  PubMed  Google Scholar 

  42. H. Oh, H. Cheun, Y.J. Kim, H.K. Yoon, H. Kang, H.C. Lee, H.P. Park, J.H. Kim, Y.H. Kim, Cephalocaudal tumor diameter is a predictor of diabetes insipidus after endoscopic transsphenoidal surgery for non-functioning pituitary adenoma. Pituitary 24, 303–311 (2021). https://doi.org/10.1007/s11102-020-01108-1

    Article  CAS  PubMed  Google Scholar 

  43. L. Xue, J. Wu, J. Chen, Y. Yang, Change in the pituitary stalk deviation angle after transsphenoidal surgery can predict the development of diabetes insipidus for pituitary adenomas. Endocr. Connect. 11, e220187 (2022). https://doi.org/10.1530/EC-22-0187

    Article  PubMed  PubMed Central  Google Scholar 

  44. B.R. Olson, J. Gumowski, D. Rubino, E.H. Oldfield, Pathophysiology of hyponatoremia after transsphenoidal pituitary surgery. J. Neurosurg. 87, 499–507 (1997). https://doi.org/10.3171/jns.1997.87.4.0499

    Article  CAS  PubMed  Google Scholar 

  45. K. Takano, [Endocrine diseases: progress in diagnosis and treatments. Topics: I. Anterior lobes of the pituitary; 3. Diagnosis and treatment of prolactinoma] Nihon. Naika. Gakkai. Zasshi 103, 841–848 (2014). https://doi.org/10.2169/naika.103.841

    Article  Google Scholar 

  46. B.M. Arafah, K.E. Nekl, R.S. Gold, W.R. Selman, Dynamics of prolactin secretion in patients with hypopituitarism and pituitary macroadenomas. J. Clin. Endocrinol. Metab. 80, 3507–3512 (1995). https://doi.org/10.1210/jcem.80.12.8530591

    Article  CAS  PubMed  Google Scholar 

  47. H.A. Zaidi, D.J. Cote, J.P. Castlen, W.T. Burke, Y.H. Liu, T.R. Smith, E.R. Laws Jr, Time course of resolution of hyperprolactinemia after transsphenoidal surgery among patients presenting with pituitary stalk compression. World Neurosurg. 97, 2–7 (2017). https://doi.org/10.1016/j.wneu.2016.09.066

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the nursing, ENT, and anesthesiology teams for perioperative management of the patients undergoing endoscopic endonasal pituitary surgery. We also thank Mark Cleasby, PhD from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author contributions

Conceptualization: K.S. and A.H., Methodology: K.S., N.T., A.N., and K.A., Formal analysis and investigation: A.H., and K.O., Writing – original draft preparation: K.S., Writing – review and editing: K.A. and M.M., Supervision: M.N. and M.M., All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiko Sakata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not report animal studies. This study was approved by the ethics committee of the Kurume University School of Medicine (approval number: 18019).

Informed consent

All the participants concurred with the proposed treatment plan after all the options for the management of non-functioning pituitary adenomas and prolactinomas had been clearly explained. Informed consent was obtained from all the participants in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, K., Hashimoto, A., Takeshige, N. et al. Clinical and radiographic characteristics of patients with non-functioning pituitary adenomas categorized according to their serum prolactin concentration: novel predictors of postoperative transient diabetes insipidus following surgery. Endocrine (2024). https://doi.org/10.1007/s12020-024-03835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03835-y

Keywords

Navigation