Skip to main content
Log in

Adipose-derived extracellular vesicles – a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum;

IKKβ:

inhibitory kappaB kinase beta

IL:

interleukins

IRSs:

insulin receptor substrates

JNK:

c-Jun-N-terminal kinase

MCP-1:

monocyte chemoattractant protein 1

MIF:

macrophage inhibitory factor

miR:

microRNA

MMP9:

matrix metalloproteinase 9

PPAR:

peroxisome proliferator-activated receptor

RBP4:

retinol-binding protein 4

TGF-β:

transforming growth factor beta

TIMPs:

tissue inhibitors of matrix metalloproteinases

TNF-α:

tumor necrosis factor alpha.

References

  1. L. Mastrototaro, M. Roden, Insulin resistance and insulin sensitizing agents. Metabolism 125, 154892 (2021). https://doi.org/10.1016/j.metabol.2021.154892

    Article  CAS  PubMed  Google Scholar 

  2. R.H. Eckel, S.M. Grundy, P. Zimmet, The metabolic syndrome. Lancet 365, 1415–1428 (2005). https://doi.org/10.1016/s0140-6736(05)66378-7

    Article  CAS  PubMed  Google Scholar 

  3. S. Guo, Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220, T1–T23 (2014). https://doi.org/10.1530/joe-13-0327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Xu, X. Li, H.M. Adams, K.S. Kubena, S. Guo, Etiology of metabolic syndrome and dietary intervention. Int. J. Mol. Sci. 20, 128 (2019). https://doi.org/10.3390/ijms20010128

    Article  CAS  Google Scholar 

  5. M.G. Saklayen, The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018). https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. G. Fahed, L. Aoun, M.B. Zerdan, S. Allam, M.B. Zerdan, Y. Bouferraa, H. Assi, Metabolic syndrome: updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 23, 786 (2022). https://doi.org/10.3390/ijms23020786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.B. Engin, The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol. https://doi.org/10.1007/978-3-319-48382-5_1 (2017)

  8. B. Ahmed, R. Sultana, M.W. Greene, Adipose tissue and insulin resistance in obese. Biomed. Pharmacother 137, 111315 (2021). https://doi.org/10.1016/j.biopha.2021.111315

    Article  CAS  PubMed  Google Scholar 

  9. A.E. Brown, M. Walker, Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep. 18, 75 (2016). https://doi.org/10.1007/s11886-016-0755-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. A.N. Onyango, Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell. Longev 2018, 4321714 (2018). https://doi.org/10.1155/2018/4321714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Yaribeygi, M. Maleki, T. Sathyapalan, T. Jamialahmadi, A. Sahebkar, Pathophysiology of physical inactivity-dependent insulin resistance: a theoretical mechanistic review emphasizing clinical evidence. J. Diabetes Res. 2021, 1–12 (2021). https://doi.org/10.1155/2021/7796727

    Article  CAS  Google Scholar 

  12. S. Mukharjee, S. Bank, S. Maiti, Chronic tobacco exposure by smoking develops insulin resistance. Endoc. Metab. Immune Disord. Drug Targets 20, 869–877 (2020). https://doi.org/10.2174/1871530320666200217123901

    Article  CAS  Google Scholar 

  13. M. Kivimäki, A. Bartolomucci, I. Kawachi, The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 (2023). https://doi.org/10.1038/s41574-022-00746-8

    Article  PubMed  Google Scholar 

  14. R. Ross, I.J. Neeland, S. Yamashita, I. Shai, J.C. Seidell, P. Magni, R.D. Santos, B.J. Arsenault, A. Cuevas, F.B. Hu, B.A. Griffin, A. Zambón, P.J. Barter, J.C. Fruchart, R.H. Eckel, Y. Matsuzawa, J. Després, Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020). https://doi.org/10.1038/s41574-019-0310-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. C.R. Kahn, G. Wang, K.Y. Lee, Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019). https://doi.org/10.1172/jci129187

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. De Jong, R.T.F. Wouters, N. Boulet, B. Cannon, J. Nedergaard, N. Petrovič, The β3-adrenergic receptor is dispensable for browning of adipose tissues. Am. J. Endocrinol. Mtab 312, E508–E518 (2017). https://doi.org/10.1152/ajpendo.00437.2016

    Article  Google Scholar 

  17. L. Cheng, J. Wang, H. Dai, Y. Duan, Y. An, L. Shi, Y. Lv, H. Li, C. Wang, Q. Ma, Y. Li, P. Li, H. Du, B. Zhao, Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 10, 48–65 (2021). https://doi.org/10.1080/21623945.2020.1870060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Huang, Y. Zhou, Resistin’s, obesity and insulin resistance: the continuing disconnect between rodents and humans. J. Endocrinol. Invest. 39, 607–615 (2016). https://doi.org/10.1007/s40618-015-0408-2

    Article  CAS  PubMed  Google Scholar 

  19. A.D. Gutierrez, C.A. Flores, S. Naik, M. Lee, P. Asgarisabet, M. Resman, M. Lee, J.B. McCormick, S.P. Fisher‐Hoch, Resistin levels decrease as insulin resistance increases in a Mexican-American cohort. Cytokine 148, 155687 (2021). https://doi.org/10.1016/j.cyto.2021.155687

    Article  CAS  PubMed  Google Scholar 

  20. Y. Flores‐Cortez, M.I. Barragán-Bonilla, J.M. Mendoza-Bello, C. González‐Calixto, E. Flores‐Alfaro, M. Espinoza-Rojo, Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol. Med. Rep. 26, 244 (2022). https://doi.org/10.3892/mmr.2022.12760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Li, D. Zhang, L. Goedeke, S.M. Hirabara, Y. Zhang, R.J. Perry, G.I. Shulman, Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc. Natl. Acad. Sci. USA 117, 32584–32593 (2020). https://doi.org/10.1073/pnas.1922169117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Rothermel, N. Lass, A. Barth, T. Reinehr, Link between omentin‐1, obesity and insulin resistance in children: findings from a longitudinal intervention study. Pediatr. Obes. 15, 12605 (2020). https://doi.org/10.1111/ijpo.12605

    Article  Google Scholar 

  23. M.C. Petersen, A.K. Madiraju, B.M. Gassaway, M.J. Marcel, A. Nasiri, G.M. Butrico, M. Marcucci, D. Zhang, A. Abulizi, X. Zhang, W.M. Philbrick, S.R. Hubbard, M.J. Jurczak, V.T. Samuel, J. Rinehart, G.I. Shulman, Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016). https://doi.org/10.1172/jci86013

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Pagadala, T. Kasumov, A.J. McCullough, N.N. Zein, J.P. Kirwan, Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol. Metab 23, 365–371 (2012). https://doi.org/10.1016/j.tem.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Błachnio-Zabielska, M. Chacińska, M.H. Vendelbo, P. Zabielski, The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell Physiol. Biochem. 40, 1207–1220 (2016). https://doi.org/10.1159/000453174

    Article  CAS  PubMed  Google Scholar 

  26. M.M. Yore, I. Syed, P.M. Moraes‐Vieira, T. Zhang, M.A. Herman, E.A. Homan, R. Patel, J. Lee, S. Chen, O.D. Peroni, A.S. Dhaneshwar, A. Hammarstedt, U. Smith, T.E. McGraw, A. Saghatelian, B.B. Kahn, Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014). https://doi.org/10.1016/j.cell.2014.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. I. Syed, J. Lee, P.M. Moraes‐Vieira, C.J. Donaldson, A. Sontheimer, P. Aryal, K. Wellenstein, M.J. Kolar, A.T. Nelson, D. Siegel, J. Mokrosiński, I.S. Farooqi, J. Zhao, M.M. Yore, O.D. Peroni, A. Saghatelian, B.B. Kahn, Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427.e4 (2018). https://doi.org/10.1016/j.cmet.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.D. Lynes, L.O. Leiria, M. Lundh, A. Bartelt, F. Shamsi, T.L. Huang, H. Takahashi, M.F. Hirshman, C. Schlein, A. Lee, L.A. Baer, F.J. May, F. Gao, N.R. Narain, E.Y. Chen, M.A. Kiebish, A.M. Cypess, M. Blüher, L.J. Goodyear, G.S. Hotamışlıgil, K.I. Stanford, Y. Tseng, The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Metab. 23, 631–637 (2017). https://doi.org/10.1038/nm.4297

    Article  CAS  Google Scholar 

  29. K.I. Stanford, M.D. Lynes, H. Takahashi, L.A. Baer, P.J. Arts, F.J. May, A.C. Lehnig, R. Middelbeek, J.V. Richard, K. So, E.Y. Chen, F. Gao, N.R. Narain, G. Distéfano, V. Shettigar, M.F. Hirshman, M.T. Ziolo, M.A. Kiebish, Y. Tseng, P.M. Coen, L.J. Goodyear, 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab. 27, 1111–1120.e3 (2018). https://doi.org/10.1016/j.cmet.2018.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.R. Brestoff, D. Artis, Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015). https://doi.org/10.1016/j.cell.2015.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Chung, M. Nati, T. Chavakis, A. Chatzigeorgiou, Innate immune cells in the adipose tissue. Rev. Endocr. Metab. Disord. 19, 283–292 (2018). https://doi.org/10.1007/s11154-018-9451-6

    Article  CAS  PubMed  Google Scholar 

  32. Z. Michailidou, M. Gomez-Salazar, V.I. Alexaki, Innate immune cells in the adipose tissue in health and metabolic disease. J. Innate Immun 14, 4–30 (2022). https://doi.org/10.1159/000515117

    Article  CAS  PubMed  Google Scholar 

  33. K. Bódis, M. Roden, Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Invest. 48, 13017 (2018). https://doi.org/10.1111/eci.13017

    Article  CAS  Google Scholar 

  34. P. Trayhurn, Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 (2013). https://doi.org/10.1152/physrev.00017.2012

    Article  CAS  PubMed  Google Scholar 

  35. N. Kawasaki, R. Asada, A. Saito, S. Kanemoto, K. Imaizumi, Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci. Rep. 2, 799 (2012). https://doi.org/10.1038/srep00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. Nosalski, T.J. Guzik, Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 174, 3496–3513 (2017). https://doi.org/10.1111/bph.13705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Fujisaka, I. Usui, A. Bukhari, M. Ikutani, T. Oya, Y. Kanatani, K. Tsuneyama, Y. Nagai, K. Takatsu, M. Urakaze, M. Kobayashi, K. Tobe, Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009). https://doi.org/10.2337/db08-1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P.P. Li, M. Lü, M. Nguyen, E.J. Bae, J. Chapman, D. Feng, M. Hawkins, J.E. Pessin, D.D. Sears, A.K. Nguyen, A. Amidi, S.M. Watkins, U. Nguyen, J.M. Olefsky, Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010). https://doi.org/10.1074/jbc.m110.100263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Yang, X. Wang, D. Li, L. Yu, B. Xue, H. Shi, Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol. 28, 565–574 (2014). https://doi.org/10.1210/me.2013-1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Schmidt-Arras, S. Rose-John, IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415 (2016). https://doi.org/10.1016/j.jhep.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  41. R. Yang, M. Lee, H. Hu, T.I. Pollin, A.S. Ryan, B.J. Nicklas, S. Snitker, R.B. Horenstein, K. Hull, N.H. Goldberg, A.P. Goldberg, A.R. Shuldiner, S.K. Fried, D.-W. Gong, Acute-phase serum amyloid a: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 3, 287 (2006). https://doi.org/10.1371/journal.pmed.0030287

    Article  CAS  Google Scholar 

  42. Z. Gao, D. Hwang, F. Bataille, M. Lefevre, D.A. York, M.J. Quon, J. Ye, Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Bio. Chem. 277, 48115–48121 (2002). https://doi.org/10.1074/jbc.m209459200

    Article  CAS  Google Scholar 

  43. G. Sabio, M. Das, A. Mora, Z. Zhang, J.Y. Jun, H.J. Ko, T. Barrett, J.K. Kim, R.J. Davis, A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008). https://doi.org/10.1126/science.1160794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. C. Schmitz‐Peiffer, Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann. N.Y. Acad. Sci. 967, 146–157 (2002). https://doi.org/10.1111/j.1749-6632.2002.tb04272.x

    Article  PubMed  Google Scholar 

  45. S.S. Abdelsalam, H.M. Korashy, A. Zeidan, A. Agouni, The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 9, 286 (2019). https://doi.org/10.3390/biom9070286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K. Rehman, M.S.H. Akash, A. Liaqat, S. Kamal, M.I. Qadir, A. Rasul, Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 27, 229–236 (2017). https://doi.org/10.1615/critreveukaryotgeneexpr.2017019712

    Article  PubMed  Google Scholar 

  47. C.B. Newgard, Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012). https://doi.org/10.1016/j.cmet.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Guerrero-Hernández, D. León-Aparicio, J. Chávez-Reyes, J.A. Olivares-Reyes, S. DeJesus, Endoplasmic reticulum stress in insulin resistance and diabetes. Cell Calcium 56, 311–322 (2014). https://doi.org/10.1016/j.ceca.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  49. T. Yasukawa, E. Tokunaga, H. Ota, H. Sugita, J.A.J. Martyn, M. Kaneki, S-Nitrosylation-dependent inactivation of Akt/Protein kinase B in insulin resistance. J. Biol. Chem. 280, 7511–7518 (2005). https://doi.org/10.1074/jbc.m411871200

    Article  CAS  PubMed  Google Scholar 

  50. W. Teng, Y. Li, M. Du, X.G. Lei, S. Xie, Sulforaphane prevents hepatic insulin resistance by blocking serine palmitoyltransferase 3-mediated ceramide biosynthesis. Nutrients 11, 1185 (2019). https://doi.org/10.3390/nu11051185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. E.E. Powell, V.W.S. Wong, M.E. Rinella, Non-alcoholic fatty liver disease. Lancet 397, 2212–2224 (2021). https://doi.org/10.1016/s0140-6736(20)32511-3

    Article  CAS  PubMed  Google Scholar 

  52. V. Calcaterra, E. Verduci, H. Cena, V.C. Magenes, C.F. Todisco, E. Tenuta, C.A. Gregorio, R. De Giuseppe, A. Bosetti, E. Di Profio, G.V. Zuccotti, Polycystic ovary syndrome in insulin-resistant adolescents with obesity: the role of nutrition therapy and food supplements as a strategy to protect fertility. Nutrients 13, 1848 (2021). https://doi.org/10.3390/nu13061848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Y. Li, C.-Y. Chen, Y. Ma, J. Xiao, G. Luo, Y. Li, D. Wu, Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 228, 167–175 (2019). https://doi.org/10.1016/j.lfs.2019.04.046

    Article  CAS  PubMed  Google Scholar 

  54. J. Wang, D. Wu, H. Guo, M. Li, Hyperandrogenemia and insulin resistance: the chief culprit of polycystic ovary syndrome. Life Sci. 236, 116940 (2019). https://doi.org/10.1016/j.lfs.2019.116940

    Article  CAS  PubMed  Google Scholar 

  55. M.J. Watt, P.M. Miotto, W. De Nardo, M.K. Montgomery, The liver as an endocrine organ—linking NAFLD and insulin resistance. Endocr. Rev. 40, 1367–1393 (2019). https://doi.org/10.1210/er.2019-00034

    Article  PubMed  Google Scholar 

  56. P. Anagnostis, B.C. Tarlatzis, R.P. Kauffman, Polycystic ovarian syndrome (PCOS): long-term metabolic consequences. Metabolism 86, 33–43 (2018). https://doi.org/10.1016/j.metabol.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  57. M.E.G. Kranendonk, F.L.J. Visseren, J.A. Van Herwaarden, E.N.M.N. Hoen, W. De Jager, M.H.M. Wauben, E. Kalkhoven, Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 22, 2216–2223 (2014a). https://doi.org/10.1002/oby.20847

    Article  CAS  PubMed  Google Scholar 

  58. M.E.G. Kranendonk, F.L.J. Visseren, B.W.M. Van Balkom, E.N.M.N. Hoen, J.A. Van Herwaarden, W. De Jager, S. Bateman, A.B. Brenkman, M.C. Verhaar, M.H.M. Wauben, E. Kalkhoven, Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 22, 1296–1308 (2014b). https://doi.org/10.1002/oby.20679

    Article  CAS  PubMed  Google Scholar 

  59. S. Sano, Y. Izumi, T. Yamaguchi, T. Yamazaki, M. Tanaka, M. Shiota, M. Osada‐Oka, Y. Nakamura, W. Mao, H. Wanibuchi, H. Itoh, M. Yoshiyama, Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 445, 327–333 (2014). https://doi.org/10.1016/j.bbrc.2014.01.183

    Article  CAS  PubMed  Google Scholar 

  60. Z. Deng, A. Poliakov, R.W. Hardy, R.H. Clements, C. Liu, Y. Liu, J. Wang, X. Xiang, S. Zhang, X. Zhuang, S.V. Shah, D. Sun, S. Michalek, W.E. Grizzle, T. Garvey, J. Mobley, H. Zhang, Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58, 2498–2505 (2009). https://doi.org/10.2337/db09-0216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Zhou, Y. Gu, F. Zhou, H. Zhang, M. Zhang, G. Zhang, L. Wu, K. Hua, J. Ding, Adipocytes-derived extracellular vesicle-miR-26b promotes apoptosis of cumulus cells and induces polycystic ovary syndrome. Front. Endocrinol. 12, 789939 (2022). https://doi.org/10.3389/fendo.2021.789939

    Article  Google Scholar 

  62. G. Van Niel, G. D’Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol 19, 213–228 (2018). https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  63. R.M. Johnstone, M. Adam, J.R. Hammond, L. Orr, C. Turbide, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987). https://pubmed.ncbi.nlm.nih.gov/3597417/

    Article  CAS  PubMed  Google Scholar 

  64. B.L. Deatherage, B.T. Cookson, Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immune 80, 1948–1957 (2012). https://doi.org/10.1128/iai.06014-11

    Article  CAS  Google Scholar 

  65. L.M. Doyle, M.Z. Wang, Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727 (2019). https://doi.org/10.3390/cells8070727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. C. Tricarico, J. Clancy, C. D’Souza‐Schorey, Biology and biogenesis of shed microvesicles. Small GTPases 8, 220–232 (2017). https://doi.org/10.1080/21541248.2016.1215283

    Article  CAS  PubMed  Google Scholar 

  67. M.P. Bebelman, M.J. Smit, D.M. Pegtel, S.R. Baglio, Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther 188, 1–11 (2018). https://doi.org/10.1016/j.pharmthera.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  68. J.P. Webber, L.K. Spary, A. Sanders, R.B. Chowdhury, W.G. Jiang, R. Steadman, J. Wymant, A.T. Jones, H. Kynaston, M.D. Mason, Z. Tabi, A. Clayton, Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015). https://doi.org/10.1038/onc.2013.560

    Article  CAS  PubMed  Google Scholar 

  69. M. Sheta, E.A. Taha, Y. Lu, T. Eguchi, Extracellular vesicles: new classification and tumor immunosuppression. Biology 12, 110 (2023). https://doi.org/10.3390/biology12010110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. N.I. Hornick, J. Huan, B. Doron, N.A. Goloviznina, J. Lapidus, B.H. Chang, P. Kurre, Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci. Rep. 5, 11295 (2015). https://doi.org/10.1038/srep11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. Zlotogorski‐Hurvitz, D. Dayan, G. Chaushu, J. Korvala, T. Salo, R. Sormunen, M. Vered, Human saliva-derived exosomes. J. Histochem. Cytochem. 63, 181–189 (2015). https://doi.org/10.1369/0022155414564219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. T. Pisitkun, R.-F. Shen, M.A. Knepper, Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 101, 13368–13373 (2004). https://doi.org/10.1073/pnas.0403453101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R. Shi, P.-Y. Wang, X. Li, J. Chen, Y. Li, X. Zhang, C. Zhang, T. Jiang, W. Li, W. Ding, S. Cheng, Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6, 26971–26981 (2015). https://doi.org/10.18632/oncotarget.4699

    Article  PubMed  PubMed Central  Google Scholar 

  74. L. Vojtech, S. Woo, S.M. Hughes, C. Levy, L. Ballweber, R. Sauteraud, J. Strobl, K. Westerberg, R. Gottardo, M. Tewari, F. Hladik, Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acid Res. 42, 7290–7304 (2014). https://doi.org/10.1093/nar/gku347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C.L. Dixon, S. Sheller‐Miller, G.R. Saade, S.J. Fortunato, A. Lai, C. Palma, D. Guanzon, C. Salomón, R. Menon, Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology 159, 2229–2240 (2018). https://doi.org/10.1210/en.2018-00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. B.J. Tauro, D.W. Greening, R.A. Mathias, H. Ji, S. Mathivanan, A.M. Scott, R.J. Simpson, Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304 (2012). https://doi.org/10.1016/j.ymeth.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  77. A. Hoshino, B. Costa-Silva, T. Shen, G. Rodrigues, A. Hashimoto, M.T. Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L.A. Pharmer, T.A. King, L. Bojmar, A.E. Davies, Y. Ararso, T. Zhang, H. Zhang, J.M. Hernandez, J.M. Weiss, V.D. Dumont-Cole, K. Kramer, L.H. Wexler, A. Narendran, G.K. Schwartz, J.H. Healey, P. Sandström, K.J. Labori, E.H. Kure, P.M. Grandgenett, M.A. Hollingsworth, M. De Sousa, S. Kaur, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, M.S. Brady, Ø. Fodstad, V. Muller, K. Pantel, A.J. Minn, M.J. Bissell, B.A. Garcia, Y. Kang, V.K. Rajasekhar, C.M. Ghajar, I. Matei, H. Peinado, J. Bromberg, D. Lyden, Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015). https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Y. Watanabe, T. Fukuda, C. Hayashi, Y. Nakao, M. Toyoda, K. Kawakami, T. Shinjo, M. Iwashita, H. Yamato, K. Yotsumoto, T. Taketomi, T. Uchiumi, T. Sanui, F. Nishimura, Extracellular vesicles derived from GMSCs stimulated with TNF-α and IFN-α promote M2 macrophage polarization via enhanced CD73 and CD5L expression. Sci. Rep. 12, 13344 (2022). https://doi.org/10.1038/s41598-022-17692-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. B.J. Tauro, D.W. Greening, R.A. Mathias, S. Mathivanan, H. Ji, R.J. Simpson, Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell Proteomics 12, 587–598 (2013). https://doi.org/10.1074/mcp.m112.021303

    Article  CAS  PubMed  Google Scholar 

  80. R. Crescitelli, C. Lässer, T. Szabó, Á. Kittel, M. Eldh, I. Dianzani, E.I. Buzás, J. Lötvall, Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2. https://doi.org/10.3402/jev.v2i0.20677 (2013)

  81. M.F.S. Lindenbergh, W. Stoorvogel, Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu. Rev. Immunol. 36, 435–459 (2018). https://doi.org/10.1146/annurev-immunol-041015-055700

    Article  CAS  PubMed  Google Scholar 

  82. E. Emmanouilidou, K. Melachroinou, T.I. Roumeliotis, S.D. Garbis, M. Ntzouni, L.H. Margaritis, L. Stefanis, K. Vekrellis, Cell-produced α-Synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010). https://doi.org/10.1523/jneurosci.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. L. Rajendran, M. Honsho, T. Zahn, P. Keller, K. Geiger, P. Verkade, K. Simons, Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103, 11172–11177 (2006). https://doi.org/10.1073/pnas.0603838103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Sharma, U. Sharma, Exosomes in cardiovascular diseases: a blessing or a sin for the mankind. Moll. Cell. Biochem. 477, 833–847 (2022). https://doi.org/10.1007/s11010-021-04328-6

    Article  CAS  Google Scholar 

  85. S. Laksono, B. Setianto, A.S. Prawara, B. Dwiputra, Highlighting exosomes’ function in cardiovascular diseases. Curr. Cardiol. Rev. 18, 241121191159 (2022). https://doi.org/10.2174/1573403x17666210204153526

    Article  CAS  Google Scholar 

  86. V.C. Kok, Y. Cheng, Cancer-derived exosomes: their role in cancer biology and biomarker development. Int. J. Nanomed. 15, 8019–8036 (2020). https://doi.org/10.2147/ijn.s272378

    Article  CAS  Google Scholar 

  87. Y. Zhou, Y. Zhang, H. Gong, S. Luo, Y. Cui, The role of exosomes and their applications in cancer. Int. J. Mol. Sci. 22, 12204 (2021). https://doi.org/10.3390/ijms222212204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. V.R. Minciacchi, M.R. Freeman, D. Di Vizio, Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell. Dev. Biol. 40, 41–51 (2015). https://doi.org/10.1016/j.semcdb.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Y. Pan, Y. Wang, Y. Wang, S. Xu, F. Jiang, Y. Han, M. Hu, Z. Liu, Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications. Clin. Transl. Oncol. 25, 873–881 (2023). https://doi.org/10.1007/s12094-022-03014-3

    Article  PubMed  Google Scholar 

  90. C. Lawson, J.M. Vicencio, D.M. Yellon, S.M. Davidson, Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J. Endocrinol. 228, 57–71 (2016). https://doi.org/10.1530/joe-15-0201

    Article  Google Scholar 

  91. N. Amabile, S. Cheng, J. Renard, M.G. Larson, A. Ghorbani, E.L. McCabe, G.K. Griffin, C.L. Guerin, J.E. Ho, S.Y. Shaw, K.S. Cohen, R.S. Vasan, A. Tedgui, C.M. Boulanger, T.J. Wang, Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J. 35, 2972–2979 (2014). https://doi.org/10.1093/eurheartj/ehu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. T. Vajen, S.F. Mause, R.R. Koenen, Microvesicles from platelets: novel drivers of vascular inflammation. Thromb. Haemost. 114, 228–236 (2015). https://doi.org/10.1160/th14-11-0962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. F. Puhm, É. Boilard, K.R. Machlus, Platelet extracellular vesicles. Arterioscler. Thromb. Vasc. Biol. 41, 87–96 (2021). https://doi.org/10.1161/atvbaha.120.314644

    Article  CAS  PubMed  Google Scholar 

  94. Z. Shu, J. Tan, Y. Miao, Q. Zhang, The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J. Cell. Mol. Med. 23, 7933–7945 (2019). https://doi.org/10.1111/jcmm.14716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. F. Mannavola, S. D’Oronzo, M. Cives, L.S. Stucci, G. Ranieri, F. Silvestris, M. Tucci, Extracellular vesicles and epigenetic modifications are hallmarks of melanoma progression. Int. J. Mol. Sci. 21, 52 (2019). https://doi.org/10.3390/ijms21010052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. C. Ciardiello, A. Leone, P. Lanuti, M.S. Roca, T. Moccia, V.R. Minciacchi, M. Minopoli, V. Gigantino, R. De Cecio, M. Rippa, L. Petti, F. Capone, C. Vitagliano, M.R. Milone, B. Pucci, R. Lombardi, F. Iannelli, E. Di Gennaro, F. Bruzzese, M. Marchisio, M.V. Carriero, D. Di Vizio, A. Budillon, Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J. Exp. Clin. Cancer Res. 38, 317 (2019). https://doi.org/10.1186/s13046-019-1317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. M.J. Szczepański, M. Szajnik, A. Welsh, T.L. Whiteside, M. Boyiadzis, Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor- 1. Haematologica 96, 1302–1309 (2011). https://doi.org/10.3324/haematol.2010.039743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. H.-Y. Cheng, C.-H. Hsieh, P.-J. Lin, Y.-T. Chen, D.S.-S. Hsu, S. Tai, P. Chu, M.H. Yang, Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance. J. Immunother. Cancer 10, e004832 (2022). https://doi.org/10.1136/jitc-2022-004832

    Article  PubMed  PubMed Central  Google Scholar 

  99. S. Zhang, X. Liao, S. Chen, W. Qian, M. Li, Y. Xu, M. Yang, X. Li, S. Mo, M. Tang, X. Wu, Y. Hu, Z. Li, R. Yu, A. Abudourousuli, L. Song, J. Li, Large oncosome‐loaded VAPA promotes bone‐tropic metastasis of hepatocellular carcinoma via formation of osteoclastic pre‐metastatic niche. Adv. Sci. (Weinh) 9, e2201974 (2022). https://doi.org/10.1002/advs.202201974

    Article  CAS  PubMed  Google Scholar 

  100. T. Eguchi, E.A. Taha, S.K. Calderwood, K. Ono, A novel model of cancer drug resistance: oncosomal release of cytotoxic and antibody-based drugs. Biology (Basel) 9, 47 (2020). https://doi.org/10.3390/biology9030047

    Article  CAS  PubMed  Google Scholar 

  101. G. Wickman, L. Julian, M.F. Olson, How apoptotic cells aid in the removal of their own cold dead bodies. Cell. Death Differ. 19, 735–742 (2012). https://doi.org/10.1038/cdd.2012.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. R.E. Veerman, L. Teeuwen, P. Czarnewski, G.G. Akpinar, A. Sandberg, X. Cao, M. Pernemalm, L.M. Orre, S. Gabrielsson, M. Eldh, Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J. Extracell. Vesicles 10, 12128 (2021). https://doi.org/10.1002/jev2.12128

    Article  CAS  Google Scholar 

  103. S. Saeedi, C. Nagy, P. Ibrahim, J.-F. Théroux, M. Wakid, L.M. Fiori, J. Yang, S. Rotzinger, J.A. Foster, N. Mechawar, S.H. Kennedy, G. Turecki, Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol. Psychiatry 26, 7417–7424 (2021). https://doi.org/10.1038/s41380-021-01255-2

    Article  CAS  PubMed  Google Scholar 

  104. L.A. Mulcahy, R.C. Pink, D.R.F. Carter, Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles. 3 https://doi.org/10.3402/jev.v3.24641 (2014)

  105. L. Johannes, C. Wunder, M. Shafaq-Zadah, Glycolipids and lectins in endocytic uptake processes. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2016.10.027 (2016)

  106. P.A. Sutter, M.E. Rouillard, S. Alshawi, S.J. Crocker, Extracellular matrix influences astrocytic extracellular vesicle function in wound repair. Brain Res. 1763, 147462 (2021). https://doi.org/10.1016/j.brainres.2021.147462

    Article  CAS  PubMed  Google Scholar 

  107. P. Briaud, A. Frey, E.C. Marino, R.A. Bastock, R.E. Zielinski, R.E. Wiemels, R.A. Keogh, E.R. Murphy, L.N. Shaw, R. O’Carroll, Temperature influences the composition and cytotoxicity of extracellular vesicles in staphylococcus aureus. mSphere 6, 0067621 (2021). https://doi.org/10.1128/msphere.00676-21

    Article  CAS  Google Scholar 

  108. Z. Andreu, M. Yáñez-Mó, Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442 (2014). https://doi.org/10.3389/fimmu.2014.00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. X. Zhou, F. Xie, L. Wang, L. Zhang, S. Zhang, M. Fang, F. Zhou, The function and clinical application of extracellular vesicles in innate immune regulation. Cell. Mol. Immunol. 17, 323–334 (2020). https://doi.org/10.1038/s41423-020-0391-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Y. Choi, U. Park, H. Koo, J.-S. Park, D.H. Lee, K. Kim, J. Choi, Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Biosens. Bioelectron. 177, 112980 (2021). https://doi.org/10.1016/j.bios.2021.112980

    Article  CAS  PubMed  Google Scholar 

  111. M. He, H. Kubo, K. Morimoto, N. Fujino, T. Suzuki, T. Takahasi, M. Yamada, M. Yamaya, T. Maekawa, Y. Yamamoto, H. Yamamoto, Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 12, 358–364 (2011). https://doi.org/10.1038/embor.2011.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. P. Sy, J. My, H.J. Kim, L. Sj, K. Sy, L. Bh, K. Th, R. Park, K. I-s, Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell. Death Differ. https://doi.org/10.1038/sj.cdd.4402242 (2008)

  113. F. Caponnetto, I. Manini, M. Škrap, T. Pálmai-Pallag, C. Di Loreto, A.P. Beltrami, D. Cesselli, E. Ferrari, Size-dependent cellular uptake of exosomes. Nanomedicine https://doi.org/10.1016/j.nano.2016.12.009 (2017)

  114. A. Esmaeili, M. Alini, M.B. Eslaminejad, S. Hosseini, Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell. Res. Ther. 13, 129 (2022). https://doi.org/10.1186/s13287-022-02806-2

    Article  PubMed  PubMed Central  Google Scholar 

  115. Y. Liu, C. Wang, A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell. Commun. Signal 21, 77 (2023). https://doi.org/10.1186/s12964-023-01103-6

    Article  PubMed  PubMed Central  Google Scholar 

  116. S. Gurung, D. Perocheau, L. Touramanidou, J. Baruteau, The exosome journey: from biogenesis to uptake and intracellular signaling. Cell. Commun. Signal 19, 47 (2021). https://doi.org/10.1186/s12964-021-00730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. R. Kalluri, V.S. LeBleu, The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020). https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. M.J. Hubal, E.P. Nadler, S.C. Ferrante, M.D. Barberio, J.-H. Suh, J. Wang, G.L. Dohm, W.J. Pories, M. Mietus‐Snyder, R.J. Freishtat, Circulating adipocyte‐derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 25, 102–110 (2017). https://doi.org/10.1002/oby.21709

    Article  CAS  PubMed  Google Scholar 

  119. X. Zhang, X. Ji, Q. Wang, J. Li, New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein. Cell https://doi.org/10.1007/s13238-017-0436-0 (2018)

  120. A. Eguchi, M. Iwasa, H. Nakagawa, Extracellular vesicles in fatty liver disease and steatohepatitis: role as biomarkers and therapeutic targets. Liver Int. 43, 292–298 (2023). https://doi.org/10.1111/liv.15490

    Article  CAS  PubMed  Google Scholar 

  121. A. Eguchi, A. Mulya, M. Lazić, D. Radhakrishnan, M. Berk, D. Povero, A. Górnicka, A.E. Feldstein, Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS One 10, e0123110 (2015). https://doi.org/10.1371/journal.pone.0123110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. H. Gu, K. Yang, Z. Shen, K. Jia, P. Liu, P. Miao, C. Sun, ER stress—induced adipocytes secrete-aldo-keto reductase 1B7—containing exosomes that cause nonalcoholic steatohepatitis in mice. Free Radic. Biol. Med. 163, 220–233 (2021). https://doi.org/10.1016/j.freeradbiomed.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  123. X. Ge, L. Yin, H. Ma, T. Li, J.Y.L. Chiang, Y. Zhang, Aldo-keto reductase 1B7 is a target gene of FXR and regulates lipid and glucose homeostasis. J. Lipid. Res. 52, 1561–1568 (2011). https://doi.org/10.1194/jlr.m015859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. V. Wieser, T.E. Adolph, C. Grander, F. Grabherr, B. Enrich, P. Moser, A.R. Moschen, S. Kaser, H. Tilg, Adipose type I interferon signalling protects against metabolic dysfunction. Gut 67, 157–165 (2018). https://doi.org/10.1136/gutjnl-2016-313155

    Article  CAS  PubMed  Google Scholar 

  125. S.C. Ferrante, E.P. Nadler, D.K. Pillai, M.J. Hubal, Z. Wang, J.M. Wang, H. Gordish‐Dressman, E.S. Koeck, S. Sevilla, A.A. Wiles, R.J. Freishtat, Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr. Res. 77, 447–454 (2015). https://doi.org/10.1038/pr.2014.202

    Article  CAS  PubMed  Google Scholar 

  126. W. Ying, M. Riopel, G. Bandyopadhyay, Y. Dong, A. Birmingham, J.B. Seo, J.M. Ofrecio, J. Wollam, A. Hernández-Carretero, W. Fu, P. Li, J.M. Olefsky, Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384.e12 (2017). https://doi.org/10.1016/j.cell.2017.08.035

    Article  CAS  PubMed  Google Scholar 

  127. T. Liu, Y. Sun, C. Peng, H. Shao, Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem. Biophys. Res. Commun. 515, 352–358 (2019). https://doi.org/10.1016/j.bbrc.2019.05.113

    Article  CAS  PubMed  Google Scholar 

  128. B. Gross, M. Pawlak, P. Lefèbvre, B. Staels, PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36–49 (2017). https://doi.org/10.1038/nrendo.2016.135

    Article  CAS  PubMed  Google Scholar 

  129. D. Montaigne, L. Butruille, B. Staels, PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 18, 809–823 (2021). https://doi.org/10.1038/s41569-021-00569-6

    Article  CAS  PubMed  Google Scholar 

  130. Y. Pan, X. Hui, R.L.C. Hoo, D. Ye, C.Y.C. Chan, T. Feng, Y. Wang, K.S.L. Lam, A. Xu, Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Investig. 129, 834–849 (2019). https://doi.org/10.1172/jci123069

    Article  PubMed  PubMed Central  Google Scholar 

  131. A. Fuchs, D. Samovski, G.I. Smith, V. Cifarelli, S.S. Farabi, J. Yoshino, T. Pietka, S.-E. Chang, S. Ghosh, T.M. Myckatyn, S. Klein, Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology 161, 968–981 (2021). https://doi.org/10.1053/j.gastro.2021.05.008

    Article  CAS  PubMed  Google Scholar 

  132. T. Thomou, M.A. Mori, J.M. Dreyfuss, M. Konishi, M. Sakaguchi, C. Wolfrum, T.N. Rao, J.N. Winnay, R. García‐Martín, S. Grinspoon, P. Görden, C.R. Kahn, Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature https://doi.org/10.1038/nature21365 (2017)

  133. G. Xu, C. Ji, G. Song, C. Zhao, C. Shi, L. Song, L. Chen, L. Yang, F. Huang, L. Pang, N. Zhang, Y. Zhao, X. Guo, MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int. J. Obes. (Lond) https://doi.org/10.1038/ijo.2015.95 (2015)

  134. H. Zhao, Q. Shang, Z. Pan, Y. Bai, Z. Li, H. Zhang, Q. Zhang, C. Guo, L. Zhang, Q. Wang, Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes https://doi.org/10.2337/db17-0356 (2018)

  135. Y. Qiu, K.D. Nguyen, J.I. Odegaard, X. Cui, X. Tian, R.M. Locksley, R.D. Palmiter, A. Chawla, Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014). https://doi.org/10.1016/j.cell.2014.03.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. N. Chalasani, Z.M. Younossi, J.E. Lavine, A.M. Diehl, E.M. Brunt, K. Cusi, M. Charlton, A.J. Sanyal, The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the study of liver diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005–2023 (2012). https://doi.org/10.1002/hep.25762

    Article  PubMed  Google Scholar 

  137. S. Pouwels, N. Sakran, Y. Graham, A. Leal, T. Pintar, W. Yang, R. Kassir, R. Singhal, K. Mahawar, D. Ramnarain, Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 22, 63 (2022). https://doi.org/10.1186/s12902-022-00980-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. M. Eslam, P.N. Newsome, S.K. Sarin, Q.M. Anstee, G. Targher, M. Romero‐Gómez, S. Zelber‐Sagi, V.W. Wong, J.-f. Dufour, J.M. Schattenberg, T. Kawaguchi, M. Arrese, L. Valenti, G. Shiha, C. Tiribelli, H. Yki‐Järvinen, J.G. Fan, H. Grønbæk, Y. Yılmaz, H. Cortêz-Pinto, C.P.M.S. De Oliveira, P. Bédossa, L.A. Adams, M. Zheng, Y. Fouad, W.K. Chan, N. Méndez–Sánchez, S.H. Ahn, L. Castéra, E. Bugianesi, V. Ratziu, J. George, A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. https://doi.org/10.1016/j.jhep.2020.03.039 (2020)

  139. M.E. Rinella, J.V. Lazarus, V. Ratziu, S. Francque, A.J. Sanyal, F. Kanwal, D.F. Romero, M.F. Abdelmalek, Q.M. Anstee, J.P. Arab, M. Arrese, R. Bataller, U. Beuers, J. Boursier, E. Bugianesi, C.D. Byrne, G.E.C. Narro, A. Chowdhury, H. Cortêz-Pinto, D. Cryer, K. Cusi, M.E. Kassas, S. Klein, W. Eskridge, J. Fan, S. Gawrieh, C.D. Guy, S.A. Harrison, S.U. Kim, B. Koot, M. Korenjak, K.V. Kowdley, F. Lacaille, R. Loomba, R. Mitchell-Thain, T.R. Morgan, E.B. Powell, M. Roden, M. Romero‐Gómez, M. Silva, S.P. Singh, S. Sookoian, C.W. Spearman, D. Tiniakos, L. Valenti, M.B. Vos, V.W. Wong, S.A. Xanthakos, Y. Yılmaz, Z.M. Younossi, A. Hobbs, M. Villota-Rivas, P.N. Newsome, A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology https://doi.org/10.1097/hep.0000000000000520 (2023)

  140. National Institutes of Health. Evidence-based methodology workshop on polycystic ovary syndrome. December 3–5, 2012. Executive summary. Final report. Available at: https://prevention.nih.gov/docs/programs/pcos/FinalReport.pdf

  141. S.E. Hayek, L. Bitar, L. Hamdar, F.G. Mirza, G. Daoud, Poly cystic ovarian syndrome: an updated overview. Front. Physiol. 7, 124 (2016). https://doi.org/10.3389/fphys.2016.00124

    Article  PubMed  PubMed Central  Google Scholar 

  142. S. Singh, N. Pal, S. Shubham, D.K. Sarma, V. Verma, F. Marotta, M. Kumar, Polycystic ovary syndrome: etiology, current management, and future therapeutics. J. Clin. Med. 12, 1454 (2023). https://doi.org/10.3390/jcm12041454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Y. Sakurai, N. Kubota, T. Yamauchi, T. Kadowaki, Role of insulin resistance in MAFLD. Int. J. Mol. Sci 22, 4156 (2021). https://doi.org/10.3390/ijms22084156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. B. Mićić, A. Djordjević, N. Veličković, S. Kovačević, T.N. Martić, D. Macut, D.V Milutinović, AMPK Activation as a Protective Mechanism to Restrain Oxidative Stress in the Insulin-Resistant State in Skeletal Muscle of Rat Model of PCOS Subjected to Postnatal Overfeeding. Biomedicines, 11 https://doi.org/10.3390/biomedicines11061586 (2023)

  145. S. Livadas, R. Paparodis, P. Anagnostis, A. Gambineri, D. Macut, T. Petrović, B.O. Yildiz, D. Micić, G. Mastorakos, D. Macut, Assessment of Type 2 diabetes risk in young women with polycystic ovary syndrome. Diagnostics (Basel), 13 https://doi.org/10.3390/diagnostics13122067 (2023)

  146. V. Soldat-Stanković, S. Popović-Pejičić, S. Stanković, A. Prtina, G. Malešević, J. Bjekić-Macut, S. Livadas, S. Ognjanović, G. Mastorakos, D. Micić, D. Macut, The effect of metformin and myoinositol on metabolic outcomes in women with polycystic ovary syndrome: role of body mass and adiponectin in a randomized controlled trial. J. Endocrinol. Invest. 45, 583–595 (2022). https://doi.org/10.1007/s40618-021-01691-5

    Article  CAS  PubMed  Google Scholar 

  147. D. Macut, J. Bjekić-Macut, D. Rahelić, M. Doknić, Insulin and the polycystic ovary syndrome. Diabetes Res. Clin. Pract. 130, 163–170 (2017). https://doi.org/10.1016/j.diabres.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  148. B. Jorgačević, D. Vučević, J. Samardžić, D. Mladenović, M. Vesković, D. Vukićević, R. Ješić, T. Radosavljević, The effect of CB1 antagonism on hepatic oxidative/nitrosative stress and inflammation in nonalcoholic fatty liver disease. Curr. Med. Chem. 28, 169–180 (2021). https://doi.org/10.2174/0929867327666200303122734

    Article  CAS  PubMed  Google Scholar 

  149. B. Jorgačević, D. Vučević, M. Vesković, D. Mladenović, D. Vukićević, R.J. Vukićević, V. Todorovic, T. Radosavljević, The effect of cannabinoid receptor 1 blockade on adipokine and proinflammatory cytokine concentration in adipose and hepatic tissue in mice with nonalcoholic fatty liver disease. Can. J. Physiol. Pharmacol. 97, 120–129 (2019). https://doi.org/10.1139/cjpp-2018-0607

    Article  CAS  PubMed  Google Scholar 

  150. R. Robeva, D. Mladenović, M. Vesković, D. Hrnčić, J. Bjekić-Macut, O. Stanojlović, S. Livadas, B.O. Yildiz, D. Macut, The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause. Maturitas 151, 22–30 (2021). https://doi.org/10.1016/j.maturitas.2021.06.012

    Article  CAS  PubMed  Google Scholar 

  151. B. Jorgačević, D. Mladenović, M. Ninković, M. Vesković, V. Dragutinović, A. Vatazević, D. Vučević, R.J. Vukićević, T. Radosavljević, Rimonabant improves oxidative/nitrosative stress in mice with nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev 2015, 842108 (2015). https://doi.org/10.1155/2015/842108

    Article  PubMed  PubMed Central  Google Scholar 

  152. M.S. Stanković, D. Mladenović, M. Ninković, I. Đuričić, S. Šobajić, B. Jorgačević, S.R. De Luka, R.J. Vukićević, T. Radosavljević, The effects ofα-Lipoic acid on liver oxidative stress and free fatty acid composition in methionine–choline deficient diet-induced NAFLD. J. Med. Food 17, 254–261 (2014). https://doi.org/10.1089/jmf.2013.0111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. I. Perović-Blagojević, S. Ignjatović, D. Macut, J. Kotur‐Stevuljević, I. Božić-Antić, J. Vekić, J. Bjekić-Macut, B. Kastratović-Kotlica, Z. Andrić, D. Ilić, Evaluation of a summary score for dyslipidemia, oxidative stress and inflammation (The Doi Score) in women with polycystic ovary syndrome and its relationship with obesity. J. Med. Biochem. https://doi.org/10.2478/jomb-2018-0008 (2018)

  154. M. Vesković, D. Mladenović, M. Milenković, J. Tošić, S. Borozan, K. Gopčević, M. Labudović‐Borović, V. Dragutinović, D. Vučević, B. Jorgačević, A. Isaković, V. Trajković, T. Radosavljević, Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur. J. Pharmacol. 848, 39–48 (2019). https://doi.org/10.1016/j.ejphar.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  155. S. Kumariya, V. Ubba, R.K. Jha, J.R. Gayen, Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy 17, 2706–2733 (2021). https://doi.org/10.1080/15548627.2021.1938914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. M. Vesković, M. Labudović‐Borović, D. Mladenović, J. Jadžić, B. Jorgačević, D. Vukićević, D. Vučević, T. Radosavljević, Effect of betaine supplementation on liver tissue and ultrastructural changes in methionine–choline-deficient diet-induced NAFLD. Microsc. Microanal 26, 997–1006 (2020). https://doi.org/10.1017/s1431927620024265

    Article  PubMed  Google Scholar 

  157. K.M. Siemers, A.K. Klein, M. Baack, Mitochondrial dysfunction in PCOS: insights into reproductive organ pathophysiology. Int. J. Mol. Sci. 24 https://doi.org/10.3390/ijms241713123 (2023)

  158. M. Maestri, F. Santopaolo, M. Pompili, A. Gasbarrini, F.R. Ponziani, Gut microbiota modulation in patients with non-alcoholic fatty liver disease: effects of current treatments and future strategies. Front. Nutr. 10, 1110536 (2023). https://doi.org/10.3389/fnut.2023.1110536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. A.G. Mukherjee, U.R. Wanjari, S. Kannampuzha, R. Murali, A. Namachivayam, R. Ganesan, A. Dey, A. Babu, K. Renu, B. Vellingiri, G. Ramanathan, G.P.D. C, N.M. Elsherbiny, A.M. Elsherbini, A.M. Alsamman, H. Zayed, A.V. Gopalakrishnan, The implication of mechanistic approaches and the role of the microbiome in polycystic ovary syndrome (PCOS): a review. Metabolites, 13 https://doi.org/10.3390/metabo13010129 (2023)

  160. M. Rizk, V.G. Thackray, Intersection of polycystic ovary syndrome and the gut microbiome. J. Endocr. Soc. 5, 177 (2020). https://doi.org/10.1210/jendso/bvaa177

    Article  CAS  Google Scholar 

  161. W. Che, M. Zhao, X. Li, C. Li, W.C. Cho, S. Yu, Current insights in molecular characterization of non-alcoholic fatty liver disease and treatment. Front. Endorcinol. (Lausanne), 13 https://doi.org/10.3389/fendo.2022.1002916 (2022)

  162. S. Ziółkowska, A. Binienda, M. Jabłkowski, J. Szemraj, P. Czarny, The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222011128 (2021)

  163. B. Knebel, J. Haas, S. Hartwig, J. Shvero, C. Köllmer, U. Nitzgen, D. Müller‐Wieland, J. Kotzka, Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One 7, 31812 (2012). https://doi.org/10.1371/journal.pone.0031812

    Article  CAS  Google Scholar 

  164. U. Özcan, Q. Cao, E. Yılmaz, A. Lee, N.N. Iwakoshi, E. Özdelen, G. Tuncman, C.Z. Görgün, L.H. Glimcher, G.S. Hotamışlıgil endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science https://doi.org/10.1126/science.1103160 (2004)

  165. K. Du, S. Herzig, R. Kulkarni, M. Montminy, TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577 (2003). https://doi.org/10.1126/science.1079817

    Article  CAS  PubMed  Google Scholar 

  166. P. Anagnostis, R. Paparodis, J.K. Bosdou, C. Bothou, D.G. Goulis, D. Macut, A. Dunaif, S. Livadas, The major impact of obesity on the development of type 2 diabetes (T2D) in women with PCOS: a systematic review and meta-analysis of observational studies. J. Endocr. Soc. 5, A746–A747 (2021). https://doi.org/10.1210/jendso/bvab048.1517

    Article  PubMed Central  Google Scholar 

  167. M. Jamnongjit, S.R. Hammes, Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 5, 1178–1183 (2006). https://doi.org/10.4161/cc.5.11.2803

    Article  CAS  PubMed  Google Scholar 

  168. J. Rojas, M. Chávez-Castillo, L.C. Olivar, M. Rojas, J. Morillo, J. Mejías, M.J. Calvo, V. Bermúdez, Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014, 1–17 (2014). https://doi.org/10.1155/2014/719050

    Article  Google Scholar 

  169. G. De Pergola, The adipose tissue metabolism: role of testosterone and dehydroepiandrosterone. Int. J. Obes. Relat. Metab. Disord. https://doi.org/10.1038/sj.ijo.0801280 (2000)

  170. F. Giallauria, S. Palomba, C. Vigorito, D. Tafuri, A. Colao, G. Lombardi, F. Orio, Androgens in polycystic ovary syndrome: the role of exercise and diet. Semin. Reprod. Med. 27, 306–315 (2009). https://doi.org/10.1055/s-0029-1225258

    Article  CAS  PubMed  Google Scholar 

  171. S.A. Paschou, S.A. Polyzos, P. Anagnostis, D.G. Goulis, C. Kanaka-Gantenbein, I. Lambrinoudaki, N.A. Georgopoulos, A. Vryonidou, Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine 67, 1–8 (2020). https://doi.org/10.1007/s12020-019-02085-7

    Article  CAS  PubMed  Google Scholar 

  172. A. Baranova, T.P. Tran, A. Afendy, L. Wang, A. Shamsaddini, R. Mehta, V. Chandhoke, A. Birerdinc, Z.M. Younossi, Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS). J. Transl. Med. 11, 133 (2013). https://doi.org/10.1186/1479-5876-11-133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. A. Xu, K.W. Chan, R.L. Hoo, Y. Wang, K.C. Tan, J. Zhang, B. Chen, M.C. Lam, C. Tse, G.J. Cooper, K.S. Lam, Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem. 280, 18073–18080 (2005). https://doi.org/10.1074/jbc.M414231200

    Article  CAS  PubMed  Google Scholar 

  174. T. Seidu, P. McWhorter, J. Myer, R. Alamgir, N. Eregha, D. Bogle, T. Lofton, C. Ecelbarger, S. Andrisse, DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J. Endocrinol. 250, 49–65 (2021). https://doi.org/10.1530/JOE-21-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. M.J. Song, J.Y. Choi, Androgen dysfunction in non-alcoholic fatty liver disease: role of sex hormone binding globulin. Front. Endocrinol. (Lausanne), 13 https://doi.org/10.3389/fendo.2022.1053709 (2022)

  176. D. Wang, H. Zhao, C. Xing, B. Lv, X. Wang, B He, Androgens exacerbate hepatic triglyceride accumulation in rats with polycystic ovary syndrome by downregulating MTTP expression. Endocrine https://doi.org/10.1007/s12020-023-03590-6 (2023)

  177. G. Targher, M. Rossini, A. Lonardo, Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis? Endocrine 51, 211–221 (2016). https://doi.org/10.1007/s12020-015-0640-8

    Article  CAS  PubMed  Google Scholar 

  178. K. Stefanaki, I. Ilias, S.A. Paschou, D.S. Karagiannakis, Hepatokines: the missing link in the development of insulin resistance and hyperandrogenism in PCOS? Hormones (Athens) 22, 715–724 (2023). https://doi.org/10.1007/s42000-023-00487-x

    Article  PubMed  Google Scholar 

  179. Y. Chen, L. Ma, Z. Ge, Y. Pan, L. Xie, Key genes associated with non-alcoholic fatty liver disease and polycystic ovary syndrome. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2022.888194 (2022)

  180. H.Y. Choi, S.Y. Hwang, C.H. Lee, H.C. Hong, S.J. Yang, H.J. Yoo, J.A. Seo, S.G. Kim, N.H. Kim, S.H. Baik, D.S. Choi, K.M. Choi, Increased selenoprotein P levels in subjects with visceral obesity and nonalcoholic fatty liver disease. Diabetes Metab. J. 37, 63–71 (2013). https://doi.org/10.4093/dmj.2013.37.1.63

    Article  PubMed  PubMed Central  Google Scholar 

  181. A. Mutanen, P. Heikkilä, J. Lohi, T. Raivio, H. Jalanko, M.P. Pakarinen, Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure. J. Hepatol. 60, 183–190 (2014). https://doi.org/10.1016/j.jhep.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  182. N. Stefan, H.-U. Häring, Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat. Med. 19, 394–395 (2013). https://doi.org/10.1038/nm.3116

    Article  CAS  PubMed  Google Scholar 

  183. H. Misu, T. Takamura, H. Takayama, H. Hayashi, N. Matsuzawa-Nagata, S. Kurita, K. Ishikura, H. Ando, Y. Takeshita, T. Ota, M. Sakurai, T. Yamashita, E. Mizukoshi, T. Yamashita, M. Honda, K. Miyamoto, T. Kubota, N. Kubota, T. Kadowaki, H.J. Kim, I.K. Lee, Y. Minokoshi, Y. Saito, K. Takahashi, Y. Yamada, N. Takakura, S. Kaneko, A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell. Metab. 12, 483–495 (2010). https://doi.org/10.1016/j.cmet.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  184. A. Giannouli, C. Stefanaki, C. Kouskoutis, M. Konidari, I. Mani, K. Konidari, S.L. Markantonis, A. Mantzou, S.P. Dourakis, E. Deligeoroglou, F. Bacopoulou, Hepatokine profile in adolescents with polycystic ovary syndrome: a case-control study. J. Clin. Med. https://doi.org/10.3390/jcm12175744 (2023)

  185. E. Vassilatou, S. Lafoyianni, D.A. Vassiliadi, D. Ioannidis, S.A. Paschou, M. Mizamtsidi, M. Panagou, A. Vryonidou, Visceral adiposity index for the diagnosis of nonalcoholic fatty liver disease in premenopausal women with and without polycystic ovary syndrome. Maturitas 116, 1–7 (2018). https://doi.org/10.1016/j.maturitas.2018.06.013

    Article  PubMed  Google Scholar 

  186. D. Liu, X. Gao, X.F. Pan, T. Zhou, C. Zhu, F. Li, J.G. Fan, G. Targher, J. Zhao, The hepato-ovarian axis: genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med. https://doi.org/10.1186/s12916-023-02775-0 (2023)

  187. M. Shahbaz, H. Almatooq, P. Foucambert, F.D. Esbrand, S. Zafar, V. Panthangi, A.R. Cyril Kurupp, A. Raju, G. Luthra, S. Khan, A systematic review of the risk of non-alcoholic fatty liver disease in women with polycystic ovary syndrome. Cureus 14, 29928 (2022). https://doi.org/10.7759/cureus.29928

    Article  Google Scholar 

  188. R. Manzano-Nunez, M. Santana-Dominguez, J. Rivera-Esteban, C. Sabiote, E. Sena, J. Bañares, F. Tacke, J.M. Pericàs, Non-alcoholic fatty liver disease in patients with polycystic ovary syndrome: a systematic review, meta-analysis, and meta-regression. J. Clin. Med., 12 https://doi.org/10.3390/jcm12030856 (2023)

  189. A.N. Srinivas, D. Suresh, P.K. Santhekadur, D. Suvarna, D.P. Kumar, Extracellular vesicles as inflammatory drivers in NAFLD. Front. Immunol. 11, 627424 (2021). https://doi.org/10.3389/fimmu.2020.627424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. H. Malhi, R.J. Kaufman, Endoplasmic reticulum stress in liver disease. J. Hepatol. 54, 795–809 (2011). https://doi.org/10.1016/j.jhep.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  191. M.-M. Lu, Y. Ren, Y. Zhou, L. Xu, M. Zhang, D. Li, C. Wu, X. Jin, Antagonizing adipose tissue-derived exosome miR-103-hepatocyte phosphatase and tensin homolog pathway alleviates autophagy in non-alcoholic steatohepatitis: a trans-cellular crosstalk. World J. Gastroenterol. 29, 4528–4541 (2023). https://doi.org/10.3748/wjg.v29.i29.4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. B. Dewidar, C. Meyer, S. Dooley, A.N. Meindl-Beinker, TGF-β in hepatic stellate cell activation and liver fibrogenesis—updated 2019. Cells, 8 https://doi.org/10.3390/cells8111419 (2019)

  193. E.S. Koeck, T. Iordanskaia, S. Sevilla, S.C. Ferrante, M.J. Hubal, R.J. Freishtat, E.P. Nadler, Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J. Surg. Res 192, 268–275 (2014). https://doi.org/10.1016/j.jss.2014.06.050

    Article  CAS  PubMed  Google Scholar 

  194. Y. Zhao, M. Zhao, S. Jiang, J. Liu, X. Yuan, D. Shen, J. Zhang, N. Zhou, J. He, L. Fang, X. Sun, B. Xue, C. Li, Liver governs adipose remodelling via extracellular vesicles in response to lipid overload. Nat. Commun.https://doi.org/10.1038/s41467-020-14450-6 (2020)

  195. M. Cao, Y. Zhao, T. Chen, Z. Zhao, B. Zhang, C. Yuan, X. Wang, L. Chen, N. Wang, C. Li, X. Zhou, Adipose mesenchymal stem cell–derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. Biomaterials 288, 121739 (2022). https://doi.org/10.1016/j.biomaterials.2022.121739

    Article  CAS  PubMed  Google Scholar 

  196. K. Suzuki, M. Shinohara, Y. Uno, Y. Tashiro, G. Gheni, M. Yamamoto, A. Fukumori, A. Shindo, T. Mashimo, H. Tomimoto, N. Sato, Deletion of B-cell translocation gene 2 (BTG2) alters the responses of glial cells in white matter to chronic cerebral hypoperfusion. J. Neuroinflammation 18, 86 (2021). https://doi.org/10.1186/s12974-021-02135-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Z. Zhang, C. Shi, Z. Wang, The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front. Physiol. https://doi.org/10.3389/fphys.2023.1279469 (2023)

  198. M.O. El-Derany, S.G. AbdelHamid, Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: Emphasis on caspase-2 signaling inhibition. Biochem. Pharmacol. 190, 114624 (2021). https://doi.org/10.1016/j.bcp.2021.114624

    Article  CAS  PubMed  Google Scholar 

  199. S. Tian, X. Zhou, M. Zhang, L. Cui, B. Li, Y. Liu, R. Su, K. Sun, Y. Hu, F. Yang, G. Xuan, S. Ma, X. Zheng, X. Zhou, C. Guo, Y. Shang, J. Wang, Y. Han, Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell. Res. Ther. 13, 330 (2022). https://doi.org/10.1186/s13287-022-03010-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. X. Rong, J. Liu, Y. Xia, T. Jiang, Y. Wang, F. Xie, Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell. Res. Ther. 10, 98 (2019). https://doi.org/10.1186/s13287-019-1204-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. T. Watanabe, A. Tsuchiya, S. Takeuchi, S. Nojiri, T. Yoshida, M. Ogawa, M. Ichii, M. Takamura, T. Suganami, Y. Ogawa, S. Terai, Development of a non-alcoholic steatohepatitis model with rapid accumulation of fibrosis, and its treatment using mesenchymal stem cells and their small extracellular vesicles. Regen. Ther. 14, 252–261 (2020). https://doi.org/10.1016/j.reth.2020.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  202. T. Li, Y. Yan, B. Wang, H. Qian, X. Zhang, Л. Шен, M. Wang, Y. Zhou, W. Zhu, W. Li, W. Xu, Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. https://doi.org/10.1089/scd.2012.0395 (2013)

  203. D. Povero, E. Pinatel, A. Leszczynska, N. Goyal, T. Nishio, J. Kim, D.B. Kneiber, L. De Araujo Horcel, A. Eguchi, P. Ordonez, T. Kisseleva, A.E. Feldstein, Human induced pluripotent stem cell–derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insght, 4 https://doi.org/10.1172/jci.insight.125652 (2019)

  204. Y. Zhao, T. Mei, M. Wei, S. Du, H. Wang, X. Wang, Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif. Cells Nanomed. Biotechnol. 47, 3804–3813 (2019). https://doi.org/10.1080/21691401.2019.1669619

    Article  CAS  PubMed  Google Scholar 

  205. B. Sun, Y. Ma, F. Wang, L. Hu, Y. Sun, miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res. Ther. 10, 360 (2019). https://doi.org/10.1186/s13287-019-1442-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. R.M. Chugh, H. Park, S. Esfandyari, A. Elsharoud, M. Ulin, A. Al-Hendy, Mesenchymal stem cell-conditioned media regulate steroidogenesis and inhibit androgen secretion in a PCOS cell model via BMP-2. Int. J. Mol. Sci., 22 https://doi.org/10.3390/ijms22179184 (2021)

  207. B. Ling, D.Q. Feng, Y. Zhou, T. Gao, H.M. Wei, Z.G. Tian, Effect of conditioned medium of mesenchymal stem cells on the in vitro maturation and subsequent development of mouse oocyte. Braz. J. Med. Biol. Res. 41, 978–985 (2008). https://doi.org/10.1590/s0100-879x2008005000053

    Article  CAS  PubMed  Google Scholar 

  208. H.-S. Park, E. Çetin, H. Siblini, J. Seok, H. Alkelani, S. Alkhrait, F.L. Ali, M.M. Ghasroldasht, A.L. Beckman, A. Al-Hendy, Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles to treat PCOS. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241311151 (2023)

  209. S.A. Abd-Elwahab, N.H. Khamis, R.A. Rifaai, N.F.G. El-Tahawy, R.A. Ibrahim, Mesenchymal-stem cell-derived conditioned media versus exosomes in the treatment of rat model of polycystic ovary: an attempt to understand the underlying mechanisms (Biochemical and Histological Study). Microsc. Microanal 29, 1244–1257 (2023). https://doi.org/10.1093/micmic/ozad046

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, grant number 200110.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The idea for this review originated from Djuro Macut. Search of relevant literature related to the role of adipose-derived extracellular vesicles in insulin resistance was performed by Dušan Mladenović and Milena Vesković. Search of relevant literature related to the role of adipose-derived extracellular vesicles in NAFLD was performed by Dušan Mladenović, Milena Vesković, and Nikola Šutulović. Search of relevant literature related to the role of adipose-derived extracellular vesicles in PCOS was performed by Lena Radić, Jelica Bjekić Macut and Dragan Hrnčić. The first draft of the manuscript was written by Dušan Mladenović and all authors commented on previous versions of the manuscript. The final supervision of the manuscript was performed by Olivera Stanojlović and Djuro Macut. Funding was acquired by Olivera Stanojlović. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dušan Mladenović.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mladenović, D., Vesković, M., Šutulović, N. et al. Adipose-derived extracellular vesicles – a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine (2024). https://doi.org/10.1007/s12020-024-03702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03702-w

Keywords

Navigation