Skip to main content

Advertisement

Log in

Mediation effect of antithrombin III between chronic renal insufficiency and chronic coronary artery disease in T2DM patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to investigate the potential effect of Antithrombin III (ATIII) between chronic renal insufficiency and chronic coronary artery disease (chronic CAD) in type 2 diabetes mellitus (T2DM) patients.

Methods

T2DM patients hospitalized in ZhongDa Hospital from 2013 to 2018 were enrolled. Relationships between renal function, ATIII, and chronic CAD risk were explored using multivariate regression models. Multiplicative and additive interactions were investigated between ATIII and renal function for CAD risk, and the role of ATIII was determined by bootstrap mediation analysis in patients with chronic renal dysfunction.

Results

A total of 4197 patients were included in the study, with a chronic CAD prevalence of 23.02%. Low ATIII level was statistically associated with chronic renal insufficiency and elevated CAD risk even after adjustments (P < 0.05). A positive correlation between renal function and ATIII was demonstrated, and each 1 SD increase in renal function, ATIII increased by 2.947% (2.406–3.488%, P < 0.001) and 0.969% (0.297–1.642%, P < 0.001) in crude and adjusted models respectively. Patients with decreased renal function and ATIII were at the highest chronic CAD risk (OR = 1.51, 95%CI:1.15–1.98, P < 0.05), while no multiplicative and additive interaction effects were significant. Bootstrap mediation analysis estimated that ATIII mediated approximately 4.27% of the effect of chronic renal insufficiency on chronic CAD risk.

Conclusion

ATIII may serve as a mediator between chronic renal insufficiency and chronic CAD, providing mechanistic clues for renal-heart association and new insight into clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.J. Tu, Y. Xue, D. Nie, The prevalence and treatment of diabetes in China From 2013 to 2018. Jama 327, 1706 (2022)

    Article  PubMed  Google Scholar 

  2. M.E. Pfisterer, M.J. Zellweger, B.J. Gersh, Management of stable coronary artery disease. Lancet 375, 763–772 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. J. Knuuti, W. Wijns, A. Saraste, D. Capodanno, E. Barbato et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 41, 407–477 (2019)

    Article  Google Scholar 

  4. K.A.A. Fox, M. Metra, J. Morais, D. Atar, The myth of ‘stable’ coronary artery disease. Nat. Rev. Cardiol. 17, 9–21 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. S.V. Arnold, D.L. Bhatt, G.W. Barsness, A.L. Beatty, P.C. Deedwania et al. Clinical management of stable coronary artery disease in patients with Type 2 diabetes mellitus: a scientific statement from the american heart association. Circulation 141, e779–e806 (2020)

    Article  PubMed  Google Scholar 

  6. E. Di Angelantonio, S. Kaptoge, D. Wormser, P. Willeit, A.S. Butterworth et al. Association of cardiometabolic multimorbidity with mortality. Jama 314, 52–60 (2015)

    Article  PubMed  Google Scholar 

  7. D.J. Holland, T.H. Marwick, B.A. Haluska, R. Leano, M.D. Hordern et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 101, 1061–1066 (2015)

    Article  PubMed  Google Scholar 

  8. L. Ernande, E. Audureau, C.L. Jellis, C. Bergerot, C. Henegar et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J. Am. Coll. Cardiol. 70, 1704–1716 (2017)

    Article  PubMed  Google Scholar 

  9. P. Blomstrand, M. Engvall, K. Festin, T. Lindström, T. Länne et al. Left ventricular diastolic function, assessed by echocardiography and tissue Doppler imaging, is a strong predictor of cardiovascular events, superior to global left ventricular longitudinal strain, in patients with type 2 diabetes. Eur. Heart J. Cardiovasc. Imaging 16, 1000–1007 (2015)

    PubMed  Google Scholar 

  10. J.B. Echouffo-Tcheugui, S.K. Musani, A.G. Bertoni, A. Correa, E.R. Fox et al. Patients phenotypes and cardiovascular risk in type 2 diabetes: the Jackson Heart Study. Cardiovasc. Diabetol. 21, 89 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M.A. Cavender, P.G. Steg, S.C. Smith Jr, K. Eagle, E.M. Ohman et al. Impact of Diabetes Mellitus on Hospitalization for Heart Failure, Cardiovascular Events, and Death: Outcomes at 4 Years From the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation 132, 923–931 (2015)

    Article  PubMed  Google Scholar 

  12. M.C. Thomas, M.E. Cooper, P. Zimmet, Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 12, 73–81 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. M. Tonelli, P. Muntner, A. Lloyd, B.J. Manns, S. Klarenbach et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380, 807–814 (2012)

    Article  PubMed  Google Scholar 

  14. E.L. Schiffrin, M.L. Lipman, J.F. Mann, Chronic kidney disease: effects on the cardiovascular system. Circulation 116, 85–97 (2007)

    Article  PubMed  Google Scholar 

  15. A. Solini, G. Penno, E. Bonora, C. Fondelli, E. Orsi et al. Age, renal dysfunction, cardiovascular disease, and antihyperglycemic treatment in type 2 diabetes mellitus: findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter Study. J. Am. Geriatr. Soc. 61, 1253–1261 (2013)

    Article  PubMed  Google Scholar 

  16. M. van der Velde, K. Matsushita, J. Coresh, B.C. Astor, M. Woodward et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79, 1341–1352 (2011)

    Article  PubMed  Google Scholar 

  17. A.S. Go, G.M. Chertow, D. Fan, C.E. McCulloch, C.Y. Hsu, Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. C.P. Domingueti, L.M. Dusse, M. Carvalho, K.B. Gomes, A.P. Fernandes, Hypercoagulability and cardiovascular disease in diabetic nephropathy. Clin. Chim. Acta 415, 279–285 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. M.J. Huang, R.B. Wei, Y. Wang, T.Y. Su, P. Di et al. Blood coagulation system in patients with chronic kidney disease: a prospective observational study. BMJ Open 7, e014294 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. P.M. Ambühl, R.P. Wüthrich, W. Korte, L. Schmid, R. Krapf, Plasma hypercoagulability in haemodialysis patients: impact of dialysis and anticoagulation. Nephrol. Dial. Transpl. 12, 2355–2364 (1997)

    Article  Google Scholar 

  21. J. Jankowski, J. Floege, D. Fliser, M. Böhm, N. Marx, Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Koren-Morag, U. Goldbourt, D. Tanne, Renal dysfunction and risk of ischemic stroke or TIA in patients with cardiovascular disease. Neurology 67, 224–228 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. A.G. Stack, Coronary artery disease and peripheral vascular disease in chronic kidney disease: an epidemiological perspective. Cardiol. Clin. 23, 285–298 (2005)

    Article  PubMed  Google Scholar 

  24. M.J. Adams, A.B. Irish, G.F. Watts, R. Oostryck, G.K. Dogra, Hypercoagulability in chronic kidney disease is associated with coagulation activation but not endothelial function. Thromb. Res. 123, 374–380 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. R.D. Rosenberg, Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism. Am. J. Med. 87, 2s–9s (1989)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Lu, F. Wang, M. Liang, SerpinC1/Antithrombin III in kidney-related diseases. Clin. Sci. 131, 823–831 (2017)

    Article  CAS  Google Scholar 

  27. G. Blavy, C. Kouame, [Renal pathology in the Ivory Coast: exploration and functional activity of antithrombin iii]. Nephrologie 15, 387–389 (1994)

    CAS  PubMed  Google Scholar 

  28. Z. Lu, D. Cheng, J. Yin, R. Wu, G. Zhang et al. Antithrombin III protects against contrast-induced nephropathy. EBioMedicine 17, 101–107 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  29. F. Wang, G. Zhang, Z. Lu, A.M. Geurts, K. Usa et al. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury. Kidney Int. 88, 796–803 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S.G. Thompson, C. Fechtrup, E. Squire, U. Heyse, G. Breithardt et al. Antithrombin III and fibrinogen as predictors of cardiac events in patients with angina pectoris. Arterioscler Thromb. Vasc. Biol. 16, 357–362 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. J. Lu, D. Niu, D. Zheng, Q. Zhang, W. Li, Predictive value of combining the level of lipoprotein-associated phospholipase A2 and antithrombin III for acute coronary syndrome risk. Biomed. Rep. 9, 517–522 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Uchiba, K. Okajima, K. Murakami, Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb. Res. 89, 233–241 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Ma, J. Wang, J. Gao, H. Yang, Y. Wang et al. Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury. Thromb. Haemost. 113, 338–349 (2015)

    Article  PubMed  Google Scholar 

  34. C.M. Tu, C.H. Hsueg, K.M. Chu, S.M. Cheng, T.P. Tsao, Simultaneous thromboses of double coronary arteries in a young male with antithrombin III deficiency. Am. J. Emerg. Med. 27, 1169.e1163–1166 (2009)

    Article  Google Scholar 

  35. J. Chen, W. Zhang, Y.Q. Wu, H. Chen, J.F. Zhao, Correlations of acute myocardial infarction complicated by cerebral infarction with insulin resistance, adiponectin and HMGB1. Eur. Rev. Med. Pharm. Sci. 23, 4425–4431 (2019)

    CAS  Google Scholar 

  36. A.S. Levey, L.A. Stevens, C.H. Schmid, Y.L. Zhang, A.F. Castro 3rd et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group, KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–s127 (2022)

    Article  Google Scholar 

  38. S.D. Navaneethan, S. Zoungas, M.L. Caramori, J.C.N. Chan, H.J.L. Heerspink et al. Diabetes management in chronic kidney disease: synopsis of the KDIGO 2022 clinical practice guideline update. Ann. Intern. Med. 176, 381–387 (2023)

    Article  PubMed  Google Scholar 

  39. R.H. Kauffmann, J.J. Veltkamp, N.H. Van Tilburg, L.A. Van Es, Acquired antithrombin III deficiency and thrombosis in the nephrotic syndrome. Am. J. Med. 65, 607–613 (1978)

    Article  CAS  PubMed  Google Scholar 

  40. P. Liu, P. Ravani, Age and the eGFR-dependent risk for adverse clinical outcomes. Clin. Kidney J. 16, 245–253 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Grasing, K. Kennedy, M.J. Sarnak, J.M. Burns, A. Gupta, Mild to moderate decrease in eGFR and cognitive decline in older adults. Nephrol. Dialysis Transplant. 37, 1499–1506 (2021)

    Article  Google Scholar 

  42. H.T. Lin, C.M. Zheng, Y.C. Wu, Y.H. Chang, J.T. Chen et al. Diabetic retinopathy as a risk factor for chronic kidney disease progression: a multicenter case-control study in Taiwan. Nutrients 11, 509 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Wang, X. Xin, W. Luo, R. Wang, X. Wang et al. Anemia and diabetic kidney disease had joint effect on diabetic retinopathy among patients with Type 2 diabetes. Investig. Ophthalmol. Vis. Sci. 61, 25 (2020)

    Article  CAS  Google Scholar 

  44. S.S. Soedamah-Muthu, Y. Vergouwe, T. Costacou, R.G. Miller, J. Zgibor et al. Predicting major outcomes in type 1 diabetes: a model development and validation study. Diabetologia 57, 2304–2314 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  45. N. Nanayakkara, A.J. Curtis, S. Heritier, A.M. Gadowski, M.E. Pavkov et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses. Diabetologia 64, 275–287 (2021)

    Article  PubMed  Google Scholar 

  46. C. Wang, X. Huang, S. Tian, R. Huang, D. Guo et al. High plasma resistin levels portend the insulin resistance-associated susceptibility to early cognitive decline in patients with Type 2 diabetes mellitus. J. Alzheimers Dis. 75, 807–815 (2020)

    Article  CAS  PubMed  Google Scholar 

  47. J.C. Biesanz, C.F. Falk, V. Savalei, Assessing mediational models: testing and interval estimation for indirect effects. Multivar. Behav. Res. 45, 661–701 (2010)

    Article  Google Scholar 

  48. M.W. Cheung, Comparison of methods for constructing confidence intervals of standardized indirect effects. Behav. Res. Methods 41, 425–438 (2009)

    Article  PubMed  Google Scholar 

  49. M. Afkarian, M.C. Sachs, B. Kestenbaum, I.B. Hirsch, K.R. Tuttle et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Mohammedi, M. Woodward, M. Marre, S. Colagiuri, M. Cooper et al. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol. 16, 95 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. J.R. Brownrigg, C.O. Hughes, D. Burleigh, A. Karthikesalingam, B.O. Patterson et al. Microvascular disease and risk of cardiovascular events among individuals with type 2 diabetes: a population-level cohort study. Lancet Diabetes Endocrinol. 4, 588–597 (2016)

    Article  PubMed  Google Scholar 

  52. E. Dal Canto, P.J.M. Elders, A.A. van der Heijden, A.J. van Ballegooijen, B.I. Lissenberg-Witte et al. Kidney function measures and cardiovascular outcomes in people with diabetes: the Hoorn Diabetes Care System cohort. Diabetologia 66, 482–494 (2023)

    Article  CAS  PubMed  Google Scholar 

  53. E. Braunwald, Diabetes, heart failure, and renal dysfunction: the vicious circles. Prog. Cardiovasc. Dis. 62, 298–302 (2019)

    Article  PubMed  Google Scholar 

  54. R.T. Gansevoort, R. Correa-Rotter, B.R. Hemmelgarn, T.H. Jafar, H.J. Heerspink et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013)

    Article  PubMed  Google Scholar 

  55. K. Skalsky, A. Shiyovich, T. Steinmetz, R. Kornowski, Chronic renal failure and cardiovascular disease: a comprehensive appraisal. J. Clin. Med. 11, 1355 (2022)

    Article  Google Scholar 

  56. M.Y. Chan, F. Andreotti, R.C. Becker, Hypercoagulable states in cardiovascular disease. Circulation 118, 2286–2297 (2008)

    Article  PubMed  Google Scholar 

  57. J.D. Ordoñez, R.A. Hiatt, E.J. Killebrew, B.H. Fireman, The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int. 44, 638–642 (1993)

    Article  PubMed  Google Scholar 

  58. A.R. Rezaie, H. Giri, Anticoagulant and signaling functions of antithrombin. J. Thromb. Haemost. 18, 3142–3153 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. V. Chan, C.K. Yeung, T.K. Chan, Antithrombin III and fibrinogen degradation product (fragment E) in diabetic nephropathy. J. Clin. Pathol. 35, 661–666 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. Yin, F. Wang, Y. Kong, R. Wu, G. Zhang et al. Antithrombin III prevents progression of chronic kidney disease following experimental ischaemic-reperfusion injury. J. Cell Mol. Med. 21, 3506–3514 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Y. Kong, J. Yin, D. Cheng, Z. Lu, N. Wang et al. Antithrombin III Attenuates AKI Following Acute Severe Pancreatitis. Shock 49, 572–579 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. A. Muslimovic, S. Rasic, D. Tulumovic, S. Hasanspahic, D. Rebic, Inflammatory markers and procoagulants in chronic renal disease stages 1-4. Med. Arch. 69, 307–310 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Y. Xie, Y. Zhang, R. Tian, W. Jin, J. Du et al. A prediction model of sepsis-associated acute kidney injury based on antithrombin III. Clin. Exp. Med. 21, 89–100 (2021)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Kitamoto, T. Imamura, Y. Taguma, T. Iwaoka, H. Yorinaka et al. Urinary thrombin as a marker of glomerular inflammation associated with renal injury in Type 2 Diabetes. Tohoku J. Exp. Med. 253, 41–49 (2021)

    Article  CAS  PubMed  Google Scholar 

  65. N.D. Vaziri, P. Paule, J. Toohey, E. Hung, S. Alikhani et al. Acquired deficiency and urinary excretion of antithrombin III in nephrotic syndrome. Arch. Intern. Med. 144, 1802–1803 (1984)

    Article  CAS  PubMed  Google Scholar 

  66. K.M. Pelkonen, U. Wartiovaara-Kautto, M.S. Nieminen, K. Ahonen, J. Sinisalo, Low normal level of protein C or of antithrombin increases risk for recurrent cardiovascular events. Blood Coagul. Fibrinolysis 16, 275–280 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. J.S. Bae, A.R. Rezaie, Mutagenesis studies toward understanding the intracellular signaling mechanism of antithrombin. J. Thromb. Haemost. 7, 803–810 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J. Pearl, Interpretation and identification of causal mediation. Psychol. Methods 19, 459–481 (2014)

    Article  PubMed  Google Scholar 

  69. L. Richiardi, R. Bellocco, D. Zugna, Mediation analysis in epidemiology: methods, interpretation and bias. Int. J. Epidemiol. 42, 1511–1519 (2013)

    Article  PubMed  Google Scholar 

  70. D. Delialis, E. Euthymiou, G. Georgiopoulos, S. Athanasopoulos, G. Mavraganis et al. Glycemia is associated with subclinical atherosclerosis through renal function in nondiabetic apparently healthy adults: a mediation analysis. Hypertens. Res. 46, 1516–1524 (2023)

    Article  PubMed  Google Scholar 

  71. T. Imaizumi, N. Fujii, T. Hamano, W. Yang, M. Taguri et al. Excess risk of cardiovascular events in patients in the United States vs. Japan with chronic kidney disease is mediated mainly by left ventricular structure and function. Kidney Int. 103, 949–961 (2023)

    Article  PubMed  Google Scholar 

  72. L.B. Cofer, Q.H. Soomro, Y. Xia, E. Luttrell-Williams, K. Myndzar et al. Platelet activity and cardiovascular risk in CKD and peripheral artery disease. Kidney Int. Rep. 7, 2242–2250 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  73. R.C. Mehta, M.E. Cho, X. Cai, J. Lee, J. Chen et al. Iron status, fibroblast growth factor 23 and cardiovascular and kidney outcomes in chronic kidney disease. Kidney Int. 100, 1292–1302 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. N.S. Bajaj, A. Singh, W. Zhou, A. Gupta, K. Fujikura et al. Coronary microvascular dysfunction, left ventricular remodeling, and clinical outcomes in patients with chronic kidney impairment. Circulation 141, 21–33 (2020)

    Article  PubMed  Google Scholar 

  75. B. Lidgard, N. Bansal, L.R. Zelnick, A.N. Hoofnagle, A.M. Fretts et al. Evaluation of plasma sphingolipids as mediators of the relationship between kidney disease and cardiovascular events. EBioMedicine 95, 104765 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. N. Harada, K. Okajima, S. Kushimoto, H. Isobe, K. Tanaka, Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. Blood 93, 157–164 (1999)

    Article  CAS  PubMed  Google Scholar 

  77. P.E. Stevens, A. Levin, Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013)

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81870568, Shaohua Wang).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.S. and Z.W. The first draft of the manuscript was written by R.S. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Jia, J., Wang, S. et al. Mediation effect of antithrombin III between chronic renal insufficiency and chronic coronary artery disease in T2DM patients. Endocrine (2024). https://doi.org/10.1007/s12020-023-03669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03669-0

Keywords

Navigation