Skip to main content

Advertisement

Log in

Astragalus polysaccharide alleviates polycystic ovary syndrome by reducing insulin resistance and oxidative stress and increasing the diversity of gut microbiota

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, which is frequently accompanied by insulin resistance, oxidative stress (OS), and dyslipidemia. Astragalus polysaccharide (APS)—as a water-soluble heteropolysaccharide—can lower blood sugar and lipid and exert anti-aging effects and thus has been proven to be beneficial to various types of metabolic diseases. However, specific mechanisms of the action of APS on PCOS are yet to be studied.

Methods

Herein, BALB/C female mice aged 3 weeks were randomly divided into three groups (10 mice/group): oil + PBS group, DHEA + PBS group, and DHEA + APS group. Changes in the estrous cycle, ovarian tissue sections, serum levels of the hormone, blood glucose, blood lipid, and OS were studied. The intestinal microbiome was sequenced and Spearman correlation analysis was used to analyze the correlation between serum metabolic indexes and microflora.

Results

The results revealed that APS treatment ameliorated insulin resistance, OS, and dyslipidemia in PCOS mice. The results of 16S rDNA sequencing indicated that there were significant differences in the composition and diversity of intestinal microorganisms between DHEA and APS treatments. Firmicutes, Lachnospiraceae, Bacilli, Lactobacillaceae, and Lachnospiraceae_NK4A13_group were abundant in the oil + PBS group. Bacteroidota and Muribaculaceae were enriched in the DHEA + PBS group, while Rikenellaceae, Odoribacter, and Marinifilaceae were enriched in the DHEA + APS group. Furthermore, Spearman correlation analysis showed that there were close interactions and correlations between intestinal bacteria and indicators of blood glucose, blood lipids, steroid hormones, and OS in PCOS mice.

Conclusions

Overall, the study showed that APS improved PCOS in mice by correcting serum metabolic disorders and increasing microbiome diversity, which may provide insight into understanding the pathogenesis and be a beneficial intervention for PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.J. Teede, M.L. Misso, J.A. Boyle, R.M. Garad, V. McAllister, L. Downes et al. Translation and implementation of the Australian-led PCOS guideline: clinical summary and translation resources from the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Med. J. Aust. 209(S7), S3–s8 (2018)

    Article  PubMed  Google Scholar 

  2. American College of Obstetricians and Gynecologists’ Committeeon Practice Bulletins—Gynecology. ACOG Practice Bulletin No. 194: Polycystic Ovary Syndrome. Obstet Gynecol. 131(6), e157–e171 (2018)

  3. R. Azziz, E. Carmina, Z. Chen, A. Dunaif, J.S. Laven, R.S. Legro et al. Polycystic ovary syndrome. Nat. Rev. Dis. Prim. 2, 16057 (2016)

    Article  PubMed  Google Scholar 

  4. H.M. Sadeghi, I. Adeli, D. Calina, A.O. Docea, T. Mousavi, M. Daniali et al. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int. J. Mol. Sci. 23(2), 33 (2022)

    Article  Google Scholar 

  5. L. Yang, Y. Chen, Y. Liu, Y. Xing, C. Miao, Y. Zhao et al. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharm. 11, 617843 (2020)

    Article  CAS  Google Scholar 

  6. S.A. Dabravolski, N.G. Nikiforov, A.H. Eid, L.V. Nedosugova, A.V. Starodubova, T.V. Popkova et al. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 22(8), 20 (2021)

    Article  Google Scholar 

  7. E. Rudnicka, K. Suchta, M. Grymowicz, A. Calik-Ksepka, K. Smolarczyk, A.M. Duszewska et al. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 22(7), 12 (2021)

    Article  Google Scholar 

  8. S. Bisht, M. Faiq, M. Tolahunase, R. Dada, Oxidative stress and male infertility. Nat. Rev. Urol. 14(8), 470–485 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. M. Murri, M. Luque-Ramírez, M. Insenser, M. Ojeda-Ojeda, H.F. Escobar-Morreale, Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum. Reprod. Update 19(3), 268–288 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. R. Gharaei, F. Mahdavinezhad, E. Samadian, J. Asadi, Z. Ashrafnezhad, L. Kashani et al. Antioxidant supplementations ameliorate PCOS complications: a review of RCTs and insights into the underlying mechanisms. J. Assist Reprod. Genet. 38(11), 2817–2831 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Yaribeygi, T. Sathyapalan, S.L. Atkin, A. Sahebkar, Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid. Med. Cell Longev. 2020, 8609213 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  12. E.A. Greenwood, H.G. Huddleston, Insulin resistance in polycystic ovary syndrome: concept versus cutoff. Fertil. Steril. 112(5), 827–828 (2019)

    Article  PubMed  Google Scholar 

  13. H.J. Teede, M.L. Misso, M.F. Costello, A. Dokras, J. Laven, L. Moran et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 33(9), 1602–1618 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  14. L. Della Corte, V. Foreste, F. Barra, C. Gustavino, F. Alessandri, M.G. Centurioni et al. Current and experimental drug therapy for the treatment of polycystic ovarian syndrome. Expert Opin. Investig. Drugs 29(8), 819–830 (2020)

    Article  PubMed  Google Scholar 

  15. N. Brettenthaler, C. De Geyter, P.R. Huber, U. Keller, Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89(8), 3835–3840 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. M. Rondanelli, A. Riva, G. Petrangolini, P. Allegrini, A. Giacosa, T. Fazia, et al. Berberine Phospholipid Is an Effective Insulin Sensitizer and Improves Metabolic and Hormonal Disorders in Women with Polycystic Ovary Syndrome: A One-Group Pretest-Post-Test Explanatory Study. Nutrients 13(10), 14 (2021)

    Article  Google Scholar 

  17. Y. Zheng, W. Ren, L. Zhang, Y. Zhang, D. Liu, Y. Liu, A Review of the Pharmacological Action of Astragalus Polysaccharide. Front. Pharm. 11, 349 (2020)

    Article  CAS  Google Scholar 

  18. M. Liu, J. Qin, Y. Hao, M. Liu, J. Luo, T. Luo et al. Astragalus polysaccharide suppresses skeletal muscle myostatin expression in diabetes: involvement of ROS-ERK and NF-κB pathways. Oxid. Med. Cell Longev. 2013, 782497 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  19. X. Pu, W. Fan, S. Yu, Y. Li, X. Ma, L. Liu et al. Polysaccharides from Angelica and Astragalus exert hepatoprotective effects against carbon-tetrachloride-induced intoxication in mice. Can. J. Physiol. Pharm. 93(1), 39–43 (2015)

    Article  CAS  Google Scholar 

  20. P. Giampaolino, V. Foreste, C. Di Filippo, A. Gallo, A. Mercorio, P. Serafino et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int J. Mol. Sci. 22(4 Feb), 2048 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Chang, A. Dunaif, Diagnosis of Polycystic Ovary Syndrome: Which Criteria to Use and When? Endocrinol. Metab. Clin. North Am. 50(1), 11–23 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  22. L. Corrie, M. Gulati, S.K. Singh, B. Kapoor, R. Khursheed, A. Awasthi et al. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci. 280, 119753 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. C.X. Li, Y. Liu, Y.Z. Zhang, J.C. Li, J. Lai, Astragalus polysaccharide: a review of its immunomodulatory effect. Arch. Pharm. Res. 45(6), 367–389 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. S. Deng, L. Yang, K. Ma, W. Bian, Astragalus polysaccharide improve the proliferation and insulin secretion of mouse pancreatic β cells induced by high glucose and palmitic acid partially through promoting miR-136-5p and miR-149-5p expression. Bioengineered 12(2), 9872–9884 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H.C. Hu, W. Zhang, P.Y. Xiong, L. Song, B. Jia, X.L. Liu, Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies. Front. Pharm. 13, 1043236 (2022)

    Article  CAS  Google Scholar 

  26. W. Sha, B. Zhao, H. Wei, Y. Yang, H. Yin, J. Gao et al. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine 112, 154667 (2023)

    Article  CAS  PubMed  Google Scholar 

  27. B. Kalyne, B.D. Murphy. Reproductive tract changes during the mouse estrous cycle. The guide to investigation of mouse pregnancy. 7, 85–94 (2013)

  28. X. Chen, C. Chen, X. Fu, Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus. Food Funct. 13(21), 11210–11222 (2022)

    Article  CAS  PubMed  Google Scholar 

  29. X. Chen, C. Chen, X. Fu, Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota-mucosal barrier”. Food Funct. 13(19), 10121–10133 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. J. Zhang, Q. Feng, Pharmacological Effects and Molecular Protective Mechanisms of Astragalus Polysaccharides on Nonalcoholic Fatty Liver Disease. Front Pharm. 13, 854674 (2022)

    Article  CAS  Google Scholar 

  31. M. Zhong, Y. Yan, H. Yuan, R. A, G. Xu, F. Cai et al. Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats. Food Funct. 13(13), 7287–7301 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. C. Lu, H. Wang, J. Yang, X. Zhang, Y. Chen, R. Feng et al. Changes in Vaginal Microbiome Diversity in Women With Polycystic Ovary Syndrome. Front. Cell Infect. Microbiol 11, 755741 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Y.L. Yang, W.W. Zhou, S. Wu, W.L. Tang, Z.W. Wang, Z.Y. Zhou et al. Intestinal Flora is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology 162(10), bqab118 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Gyuraszova, A. Kovalcikova, R. Gardlik, Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract. Med. Hypotheses 103, 81–85 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. T. Li, T. Zhang, H. Gao, R. Liu, M. Gu, Y. Yang et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox. Biol. 41, 101886 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Hong, B. Li, N. Zheng, G. Wu, J. Ma, X. Tao et al. Integrated Metagenomic and Metabolomic Analyses of the Effect of Astragalus Polysaccharides on Alleviating High-Fat Diet-Induced Metabolic Disorders. Front. Pharm. 11, 833 (2020)

    Article  CAS  Google Scholar 

  37. T. Wang, L. Sha, Y. Li, L. Zhu, Z. Wang, K. Li et al. Dietary α-Linolenic Acid-Rich Flaxseed Oil Exerts Beneficial Effects on Polycystic Ovary Syndrome Through Sex Steroid Hormones-Microbiota-Inflammation Axis in Rats. Front. Endocrinol. (Lausanne) 11, 284 (2020)

    Article  PubMed  Google Scholar 

  38. Y.X. Wu, X.Y. Yang, B.S. Han, Y.Y. Hu, T. An, B.H. Lv et al. Naringenin regulates gut microbiota and SIRT1/ PGC-1ɑ signaling pathway in rats with letrozole-induced polycystic ovary syndrome. Biomed. Pharmacother. 153, 113286 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82260305), Development of Gansu Province(21YF5FA119), Lanzhou Science and Technology Bureau project (2021-148) and Hospital fund of the First Hospital of Lanzhou University(ldyyyn2019-62).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. developed the topic and served as the guarantor of this study. X.M. designed the search strategies. R.L. and R.H. conducted basic test and draft writing. Y.H. and D.L. was responsible for processing data. R.L., Y.H., and R.H. revised the first draft multiple times and reached consensus on the final draft. All authors contributed to the paper and approved the publication of the submitted version.

Corresponding author

Correspondence to Yuan Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the First Hospital of Lanzhou University review board (LDYYLL-2019-17).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Hu, R., Huang, Y. et al. Astragalus polysaccharide alleviates polycystic ovary syndrome by reducing insulin resistance and oxidative stress and increasing the diversity of gut microbiota. Endocrine 83, 783–797 (2024). https://doi.org/10.1007/s12020-023-03553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03553-x

Keywords

Navigation