Skip to main content

Advertisement

Log in

Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.S. Rickman et al. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23(6) 1–10 (2017)

  2. A. Dasari et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 3(10), 1335–1342 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. J.-H. Fan et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in china. Oncotarget 8(42), 71699–71708 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. Milione et al. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology 104(1), 85–93 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. H. Sorbye et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann. Oncol.: Off. J. Eur. Soc. Med. Oncol. 24(1), 152–160 (2013)

    Article  CAS  Google Scholar 

  6. RT. Jensen, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 95(2) 98–119 (2012)

  7. M. Falconi et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology 95(2), 120–134 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. L.R. McKenna, B.H. Edil, Update on pancreatic neuroendocrine tumors. Gland Surg. 3(4), 258–275 (2014)

    PubMed  PubMed Central  Google Scholar 

  9. M. Pavel et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 103(2), 172–185 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. K. Kawasaki, M. Fujii, T. Sato. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis. Model Mech. 11(2) dmm029595 (2018)

  11. I.M. Modlin et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Alimentary Pharmacol. Therapeutics 31(2), 169–188 (2010)

    CAS  Google Scholar 

  12. U. Rai et al. Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol. Ther. 152, 98–110 (2015)

  13. W. Bauer et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 31(11), 1133–1140 (1982)

    Article  CAS  PubMed  Google Scholar 

  14. K. Zitzmann et al. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology 85(1), 54–60 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. K. Daskalakis et al. Anti-tumour activity of everolimus and sunitinib in neuroendocrine neoplasms. Endocr. Connect. 8(6), 641–653 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Termanini et al. Value of somatostatin receptor scintigraphy: a prospective study in gastrinoma of its effect on clinical management. Gastroenterology 112(2), 335–347 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. B. Wängberg et al. Somatostatin Receptors in the Diagnosis and Therapy of Neuroendocrine Tumor. Oncologist 2(1), 50–58 (1997)

    Article  PubMed  Google Scholar 

  18. M. Falconi et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 103(2), 153–171 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. M.A. Kouvaraki et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 22(23), 4762–4771 (2004)

    Article  CAS  Google Scholar 

  20. J.C. Yao et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364(6), 514–523 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Raymond et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364(6), 501–513 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. M. Kaku et al. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma. Gan 71(5), 596–601 (1980)

    CAS  PubMed  Google Scholar 

  23. B.M. Evers et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology 101(2), 303–311 (1991)

    Article  CAS  PubMed  Google Scholar 

  24. B.M. Evers et al. The human carcinoid cell line, BON. A model system for the study of carcinoid tumors. Ann. N. Y. Acad. Sci. 733, 393–406 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. L.G. Tillotson et al. Isolation, maintenance, and characterization of human pancreatic islet tumor cells expressing vasoactive intestinal peptide. Pancreas 22(1), 91–98 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. C. Jonnakuty, C. Gragnoli, Karyotype of the human insulinoma CM cell line-beta cell model in vitro? J. Cell. Physiol. 213(3), 661–662 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. D. Benten et al. Establishment of the First Well-differentiated Human Pancreatic Neuroendocrine Tumor Model. Mol. Cancer Res. 16(3), 496–507 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. G.W. Krampitz et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc. Natl. Acad. Sci.113(16), 4464–4469 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Lou et al. Establishment and characterization of the third non-functional human pancreatic neuroendocrine tumor cell line. Hum. Cell 35(4), 1248–1261 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. H. Iguchi, I. Hayashi, A. Kono, A somatostatin-secreting cell line established from a human pancreatic islet cell carcinoma (somatostatinoma): release experiment and immunohistochemical study. Cancer Res. 50(12), 3691–3693 (1990).

    CAS  PubMed  Google Scholar 

  31. K. Fraedrich et al. Targeting aurora kinases with danusertib (PHA-739358) inhibits growth of liver metastases from gastroenteropancreatic neuroendocrine tumors in an orthotopic xenograft model. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 18(17), 4621–4632 (2012)

    Article  CAS  Google Scholar 

  32. J. Albrecht et al. Multimodal Imaging of 2-Cycle PRRT with Lu-DOTA-JR11 and Lu-DOTATOC in an Orthotopic Neuroendocrine Xenograft Tumor Mouse Model. J. Nucl. Med.: Off. Publ., Soc. Nucl. Med. 62(3), 393–398 (2021)

    Article  CAS  Google Scholar 

  33. G.K. Boora et al. Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines. Cancer Genet. 208(7-8), 374–381 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Cao et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat. Commun. 4, 2810 (2013)

    Article  PubMed  Google Scholar 

  35. J. Strosberg et al. Phase 3 Trial of Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 376(2), 125–135 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D.J. Kwekkeboom, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol 26(13), 2124–2130 (2008)..

  37. S.M. Bison et al. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin. Transl. Imaging. 2(1), 55–66 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  38. L.M. Ellis, D.J. Hicklin, VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer. 8(8), 579–591 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. N. Ferrara, R.S. Kerbel, Angiogenesis as a therapeutic target. Nature 438(7070), 967–974 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. K. Detjen et al. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 111(3), 217–236 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. Z. Yang et al. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft. Endocr. Pathol. 27(2) 97–103 (2016)

  42. R.A. Saxton, D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell 168(6), 960–976 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Scarpa et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543(7643), 65–71 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. J.C. Yao et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387(10022), 968–977 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. K.E. O’Reilly et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66(3), 1500–1508 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  46. A.C. Hsieh et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396), 55–61 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M.E. Feldman et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7(2), e38 (2009)

    Article  PubMed  Google Scholar 

  48. C.C. Thoreen et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284(12), 8023–8032 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. C.E. Chamberlain et al. A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. Mol. Cancer Ther. 17(12), 2702–2709 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. G. Gaudenzi et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 57(2), 214–219 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. M.R. Capecchi Altering the genome by homologous recombination. Science 244(4910), 1288–1292 (1989)

    Article  CAS  PubMed  Google Scholar 

  52. K.E. Lines et al. A MEN1 pancreatic neuroendocrine tumour mouse model under temporal control. Endocr. Connect. 6(4), 232–242 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. R. Feil et al. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. 93(20), 10887–10890 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Kobayashi et al. Alleles of Insm1 determine whether RIP1-Tag2 mice produce insulinomas or nonfunctioning pancreatic neuroendocrine tumors. Oncogenesis 8(3), 16 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  55. S. Alliouachene et al. Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation. J. Clin. Investig. 118(11), 3629–3638 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Hanahan, Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015), 115–122 (1985)

    Article  CAS  PubMed  Google Scholar 

  57. O. Casanovas et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 8(4), 299–309 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. M. Pàez-Ribes et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 15(3), 220–231 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  59. S.V. Onrust et al. Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J. Clin. Investig. 97(1), 54–64 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P. Mombaerts et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5), 869–877 (1992)

    Article  CAS  PubMed  Google Scholar 

  61. F. Saupe et al. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep. 5(2), 482–492 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. A. Zumsteg et al. A bioluminescent mouse model of pancreatic {beta}-cell carcinogenesis. Carcinogenesis 31(8), 1465–1474 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. S.G. Grant et al. Early invasiveness characterizes metastatic carcinoid tumors in transgenic mice. Cancer Res. 51(18), 4917–4923 (1991)

    CAS  PubMed  Google Scholar 

  64. C.W. Chiu, H. Nozawa, D. Hanahan, Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 28(29), 4425–4433 (2010)

    Article  CAS  Google Scholar 

  65. S. Efrat et al. Glucagon gene regulatory region directs oncoprotein expression to neurons and pancreatic alpha cells. Neuron 1(7), 605–613 (1988)

    Article  CAS  PubMed  Google Scholar 

  66. Y.C. Lee, S.L. Asa, D.J. Drucker, Glucagon gene 5’-flanking sequences direct expression of simian virus 40 large T antigen to the intestine, producing carcinoma of the large bowel in transgenic mice. J. Biol. Chem. 267(15), 10705–10708 (1992)

    Article  CAS  PubMed  Google Scholar 

  67. C. Wong et al. Two well-differentiated pancreatic neuroendocrine tumor mouse models. Cell Death Differ. 27(1), 269–283 (2020)

    Article  CAS  PubMed  Google Scholar 

  68. J.S. Crabtree et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl. Acad. Sci. 98(3), 1118–1123 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. S.C. Guru et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl. Acad. Sci. 95(4), 1630–1634 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. H.C.J. Shen et al. Recapitulation of pancreatic neuroendocrine tumors in human multiple endocrine neoplasia type I syndrome via Pdx1-directed inactivation of Men1. Cancer Res. 69(5), 1858–1866 (2009)

    Article  CAS  PubMed  Google Scholar 

  71. P. Bertolino et al. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res. 63(16), 4836–4841 (2003)

    CAS  PubMed  Google Scholar 

  72. B. Harding et al. Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr.-Relat. Cancer 16(4), 1313–1327 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. F. Li et al. Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development. Endocrinology 156(1), 48–57 (2015)

    Article  PubMed  Google Scholar 

  74. H.C.J. Shen et al. Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology 151(8), 4024–4030 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J. Lu et al. Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 138(5), 1954–1965 (2010)

    Article  CAS  PubMed  Google Scholar 

  76. K.A. Loffler et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 26(27), 4009–4017 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. G. Gu, J. Dubauskaite, D.A. Melton, Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129(10), 2447–2457 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. R. Yu et al. Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PloS One. 6(8), e23397 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. H.B. Jones et al. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Int. J. Exp. Pathol. 95(1), 29–48 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. R. Yu, Animal models of spontaneous pancreatic neuroendocrine tumors. Mol. Cell. Endocrinol. 421, 60–67 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. Y. Hayashi et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells. Mol. Endocrinol. 23(12), 1990–1999 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Y. Takano et al. Pancreatic Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides. PloS One. 10(7), e0133812 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  83. S. Pelengaris, M. Khan, G.I. Evan, Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109(3), 321–334 (2002)

    Article  CAS  PubMed  Google Scholar 

  84. M.J. Haas et al. Transgene expression and repression in transgenic rats bearing the phosphoenolpyruvate carboxykinase-simian virus 40 T antigen or the phosphoenolpyruvate carboxykinase-transforming growth factor-alpha constructs. Am. J. Pathol. 155(1), 183–192 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S.T. Glenn et al. Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene 33(50), 5706–5715 (2014)

    Article  CAS  PubMed  Google Scholar 

  86. H.W. Yang et al. Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res. 64(20), 7256–7262 (2004)

    Article  CAS  PubMed  Google Scholar 

  87. T.T. Seppälä et al. Patient-derived Organoid Pharmacotyping is a Clinically Tractable Strategy for Precision Medicine in Pancreatic Cancer. Ann. Surg. 272(3), 427–435 (2020)

    Article  PubMed  Google Scholar 

  88. K. Kawasaki et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 183(5), 1420–1435 (2020)

  89. X. Shi et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity. Nat. Commun. 13(1), 2169 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S.F. Boj et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1-2), 324–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  91. M. Huch et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32(20), 2708–2721 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Z. Dantes et al. Implementing cell-free DNA of pancreatic cancer patient-derived organoids for personalized oncology. JCI Insight. 5(15), e137809 (2020)

  93. L. Demyan et al. Pancreatic Cancer Patient-derived Organoids Can Predict Response to Neoadjuvant Chemotherapy. Ann. Surg. 276(3), 450–462 (2022)

    Article  PubMed  Google Scholar 

  94. Y.S. Zhang et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl. Acad. Sci. 114(12), E2293–E2302 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. H. Chen et al. Organoid model: A new hope for pancreatic cancer treatment? Biochimica Et. Biophysica Acta Rev. Cancer 1875(1), 188466 (2021)

    Article  CAS  Google Scholar 

  96. T. Seino et al. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell. 22(3), 454–467.e6 (2018)

  97. R.A. Wimmer et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565(7740), 505–510 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A.C. Drake, Q. Chen, J. Chen, Engineering humanized mice for improved hematopoietic reconstitution. Cell. Mol. Immunol 9(3), 215–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. K.C. Soares et al. A preclinical murine model of hepatic metastases. J. Vis. Exp 91, 51677 (2014). https://doi.org/10.3791/51677.

    Article  Google Scholar 

  100. B.W. Simons et al. A hemi-spleen injection model of liver metastasis for prostate cancer. Prostate 80(14), 1263–1269 (2020)

    Article  CAS  PubMed  Google Scholar 

  101. C. Pauli et al. Personalized and Cancer Models to Guide Precision Medicine. Cancer Discov. 7(5), 462–477 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR1006A), Xuhui District Artificial Intelligence Medical Hospital Cooperation Project (2021-011) and National Natural Science Foundation of China (No. 82141129, 82141104).

Author contributions

All authors contributed to the literature Search and model summary. The first draft of the manuscript was written by Y.W., F.W., and Y.Q., so they share the first authorship. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowu Xu, Xianjun Yu or Shunrong Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, F., Qin, Y. et al. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 80, 266–282 (2023). https://doi.org/10.1007/s12020-023-03299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03299-6

Keywords

Navigation