Skip to main content

Advertisement

Log in

Endocrine disruptor chemicals, adipokines and reproductive functions

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.J. Heindel, B. Blumberg, M. Cave, R. Machtinger, A. Mantovani, M.A. Mendez, A. Nadal, P. Palanza, G. Panzica, R. Sargis, L.N. Vandenberg, F. Vom Saal, Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 68, 3–33 (2017). https://doi.org/10.1016/j.reprotox.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  2. A. Estienne, A. Bongrani, M. Reverchon, C. Ramé, P.H. Ducluzeau, P. Froment, J. Dupont, Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int. J. Mol. Sci. 20(18), 4431 (2019). https://doi.org/10.3390/ijms20184431

    Article  CAS  PubMed Central  Google Scholar 

  3. J. Küblbeck, T. Vuorio, J. Niskanen, V. Fortino, A. Braeuning, K. Abass, A. Rautio, J. Hakkola, P. Honkakoski, A.L. Levonen, The EDCMET project: metabolic effects of endocrine disruptors. Int. J. Mol. Sci. 21(8), 3021 (2020). https://doi.org/10.3390/ijms21083021

    Article  CAS  PubMed Central  Google Scholar 

  4. C.R. Giviziez, E.G. Sanchez, M.S. Approbato, M.C. Maia, E.A. Fleury, R.S. Sasaki, Obesity and anovulatory infertility: a review. JBRA Assist. Reprod. 20(4), 240–245 (2016). https://doi.org/10.5935/1518-0557.20160046

    Article  PubMed  PubMed Central  Google Scholar 

  5. P.D. Darbre, Endocrine disruptors and obesity. Curr. Obes. Rep. 6(1), 18–27 (2017). https://doi.org/10.1007/s13679-017-0240-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. F. Rancière, J. Botton, R. Slama, M.Z. Lacroix, L. Debrauwer, M.A. Charles, R. Roussel, B. Balkau, D.J. Maggliano, Exposure to bisphenol A and bisphenol S and incident type 2 diabetes: a case–cohort study in the French cohort DESIR. Environ. Health Perspect. 127, 107013 (2019). https://doi.org/10.1289/EHP5159

    Article  PubMed  PubMed Central  Google Scholar 

  7. S.J. Blunden, R. Hill, Bis (tributyltin) oxide as a wood preservative: Its chemical nature in timber. Appl. Organomet. Chem. 2, 251–256 (1988). https://doi.org/10.1002/aoc.590020308

    Article  CAS  Google Scholar 

  8. S. Takahashi, H. Mukai, S. Tanabe, K. Sakayama, T. Miyazaki, H. Masuno, Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environment 106, 213–218 (1999). https://doi.org/10.1016/S0269-7491(99)00068-8

    Article  CAS  Google Scholar 

  9. L.E. Overgaard, K.M. Main, H. Frederiksen, S. Stender, P.B. Szecsi, H.C. Williams, J.P. Thyssen, Children with atopic dermatitis and frequent emollient use have increased urinary levels of low‐molecular‐weight phthalate metabolites and parabens. Allergy 72, 1768–1777 (2017). https://doi.org/10.1111/all.13157

    Article  CAS  PubMed  Google Scholar 

  10. J.P. Mixner, J. Meites, C.W. Turner, The stimulation and inhibition of milk secretion in goats with diethylstilbestrol. J. Dairy Sci. 27, 957–964 (1944). https://doi.org/10.3168/jds.S0022-0302(44)92670-6

    Article  Google Scholar 

  11. A. Möller, Z. Xie, M. Cai, G. Zhong, P. Huang, M. Cai, R. Strum, J. He, R. Ebinghaus, Polybrominated diphenyl ethers vs alternate brominated flame retardants and dechloranes from East Asia to the Arctic. Environ. Sci. Technol. 45, 6793–6799 (2011). https://doi.org/10.1021/es201850n

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Siddiqi, R.H. Laessig, K.D. Reed, Polybrominated diphenyl ethers (PBDEs): new pollutants–old diseases. Clin. Med. Res. 1, 281–290 (2003). https://doi.org/10.3121/cmr.1.4.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.K. Woźniak, E. Jaszczak, M. Wiergowski, Ż. Polkowska, J. Namieśnik, M. Biziuk, Meconium analysis as a promising diagnostic tool for monitoring fetal exposure to toxic substances: recent trends and perspectives. Trends Anal. Chem. 109, 124–141 (2018). https://doi.org/10.1016/j.trac.2018.09.02

    Article  Google Scholar 

  14. A. Martinez, A.J. Al-Ahmad, Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 304, 39–49 (2019). https://doi.org/10.1016/j.toxlet.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  15. F.D. Dudimah, S.O. Odman‐Ghazi, F. Hatcher, M.M. Whalen, Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: Relationship to TBT‐induced decreases in NK function. J. Appl. Toxicol. 27, 86–94 (2007). https://doi.org/10.1002/jat.1202

    Article  CAS  PubMed  Google Scholar 

  16. Z. Singh, J. Kaur, R. Kaur, S.S. Hundal, Toxic effects of organochlorine pesticides: a review. Am. J. BioSci. 4, 11 (2016). https://doi.org/10.11648/j.ajbio.s.2016040301.13

    Article  CAS  Google Scholar 

  17. S. Richard, S. Moslemi, H. Sipahutar, N. Benachour, G.E. Seralini, Differential effects of glyphosate and roundup on human placental cells and aromatase. Environment 113, 716–720 (2005). https://doi.org/10.1289/ehp.7728

    Article  CAS  Google Scholar 

  18. J.R. Palmer, L.A. Wise, E.E. Hatch, R. Troisi, L. Titus-Ernstoff, W. Strohsnitter, R. Kaufman, A.L. Herbst, M.H. Noller, R.N. Hoover, Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol 15, 1509–1514 (2006). https://doi.org/10.1158/1055-9965

    Article  CAS  Google Scholar 

  19. G. Paolella, A.M. Romanelli, S. Martucciello, S. Sposito, M. Lepretti, C. Esposito, A. Capaldo, I. Caputo, The mechanism of cytotoxicity of 4‐nonylphenol in a human hepatic cell line involves ER‐stress, apoptosis, and mitochondrial dysfunction. J. Biochem Mol. Toxicol. 35, 22780 (2021). https://doi.org/10.1002/jbt.22780

    Article  CAS  Google Scholar 

  20. S.S. Yalçın, E. Örün, S. Yalçın, O. Aykut, Organochlorine pesticide residues in breast milk and maternal psychopathologies and infant growth from suburban area of Ankara, Turkey. Int. J. Environ. 25, 364–372 (2015). https://doi.org/10.1080/09603123.2014.945515

    Article  CAS  Google Scholar 

  21. Z. Zuo, S. Chen, T. Wu, J. Zhang, Y. Su, Y. Chen, C. Wang, Tributyltin causes obesity and hepatic steatosis in male mice. Environ. Toxicol. 26, 79–85 (2011). https://doi.org/10.1002/tox.20531

    Article  CAS  PubMed  Google Scholar 

  22. V. Delfosse, M. Grimaldi, J.L. Pons, A. Boulahtouf, A. le Maire, V. Cavailles, G. Labesse, W. Bourguet, P. Balaguer, Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc. Natl Acad. Sci. USA 109(37), 14930–14935 (2012). https://doi.org/10.1073/pnas.1203574109

    Article  PubMed  PubMed Central  Google Scholar 

  23. M. Hoffmann, J. Gogola, M. Kotula-Balak, A. Ptak, Stimulation of ovarian cell proliferation by tetrabromobisphenol A but not tetrachlorobisphenol A through G protein-coupled receptor 30. Toxicol. Vitr. 45(1), 54–59 (2017). https://doi.org/10.1016/j.tiv.2017.08.009

    Article  CAS  Google Scholar 

  24. J. Gogola, M. Hoffmann, A. Ptak, Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate the proliferation of granulosa tumor spheroids via GPR30 and IGF1R but not via the classic estrogen receptors. Chemosphere 217, 100–110 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  25. S. Ahmed, E. Valen, A. Sandelin, J. Matthews, Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters. Toxicol. Sci. 111(2), 254–266 (2009). https://doi.org/10.1093/toxsci/kfp144

    Article  CAS  PubMed  Google Scholar 

  26. J.P. Whitlock Jr, Induction of cytochrome P4501A1. Annu. Rev. Pharm. Toxicol. 39, 103–125 (1999). https://doi.org/10.1146/annurev.pharmtox.39.1.103

    Article  CAS  Google Scholar 

  27. H. Inadera, A. Shimomura, Environmental chemical tributyltin augments adipocyte differentiation. Toxicol. Lett. 159(3), 226–234 (2005). https://doi.org/10.1016/j.toxlet.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  28. P. Hu, X. Chen, R.J. Whitener, E.T. Boder, J.O. Jones, A. Porollo, J. Chen, L. Zhao, Effects of parabens on adipocyte differentiation. Toxicol. Sci. 1, 56–70 (2013). https://doi.org/10.1093/toxsci/kfs262

    Article  CAS  Google Scholar 

  29. B. Desvergne, W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20(5), 649–688 (1999). https://doi.org/10.1210/edrv.20.5.0380

    Article  CAS  PubMed  Google Scholar 

  30. J. Wu, J. Oka, I. Tabata, M. Higuchi, T. Toda, N. Fuku, J. Ezaki, F. Sugiyama, S. Uchiyama, K. Yamada, Y. Ishimi, Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J. Bone Min. Res. 21(5), 780–789 (2006). https://doi.org/10.1359/jbmr.060208

    Article  CAS  Google Scholar 

  31. M. Fernández, M. Bianchi, V. Lux-Lantos, C. Libertun, Neonatal exposure to bisphenol a alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ. Health Perspect. 117, 757–762 (2009). https://doi.org/10.1289/ehp.0800267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Ullah, F. Ullah, O. Rehman, S. Jahan, T. Afsar, D. Al-Disi, A. Almajwal, S. Razak, Chronic exposure of bisphenol S (BPS) affect hypothalamic-pituitary-testicular activities in adult male rats: possible in estrogenic mode of action. Environ. Health Prev. Med. 26(1), 31 (2021). https://doi.org/10.1186/s12199-021-00954-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E.R. Kadir, A. Imam, O.J. Olajide, M.S. Ajao, Alterations of Kiss 1 receptor, GnRH receptor and nuclear receptors of the hypothalamo-pituitary-ovarian axis following low dose bisphenol-A exposure in Wistar rats. Anat. Cell Biol. 54(2), 212–224 (2021). https://doi.org/10.5115/acb.20.215

    Article  PubMed  PubMed Central  Google Scholar 

  34. C. Tang, J. Zhang, P. Liu, Y. Zhou, Q. Hu, Y. Zhong, X. Wang, L. Chen, Chronic exposure to low dose of bisphenol A causes follicular atresia by inhibiting kisspeptin neurons in anteroventral periventricular nucleus in female mice. Neurotoxicology 79, 164–176 (2020). https://doi.org/10.1016/j.neuro.2020.04.011

    Article  CAS  PubMed  Google Scholar 

  35. J. Zhang, P. Sun, F. Yang, T. Kong, R. Zhang, Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus). Chemosphere 152, 221–228 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.127

    Article  CAS  PubMed  Google Scholar 

  36. H. Fu, F. Gao, X. Wang, P. Tan, S. Qiu, B. Shi, A. Shan, Effects of glyphosate-based herbicide-contaminated diets on reproductive organ toxicity and hypothalamic-pituitary-ovarian axis hormones in weaned piglets. Environ. Pollut. 272, 115596 (2021). https://doi.org/10.1016/j.envpol.2020.115596

    Article  CAS  PubMed  Google Scholar 

  37. X. Ren, R. Li, J. Liu, K. Huang, S. Wu, Y. Li, C. Li, Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ. Pollut. 243, 833–841 (2018). https://doi.org/10.1016/j.envpol.2018.09.049

    Article  CAS  PubMed  Google Scholar 

  38. J. Jurewicz, M. Radwan, B. Wielgomas, A. Karwacka, A. Klimowska, P. Kałużny, P. Radwan, W. Hanke, Parameters of ovarian reserve in relation to urinary concentrations of parabens. Environ. Health 19, 26 (2020). https://doi.org/10.1186/s12940-020-00580-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Peretz, J.A. Flaws, Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicol. Appl Pharm. 271, 249–256 (2013). https://doi.org/10.1016/j.taap.2013.04.028

    Article  CAS  Google Scholar 

  40. J. Shi, C. Liu, M. Chen, J. Yan, C. Wang, Z. Zuo, C. He, The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells. Environ. Toxicol. 36(4), 665–674 (2021). https://doi.org/10.1002/tox.23070

    Article  CAS  PubMed  Google Scholar 

  41. M. Lin, R. Hua, J. Ma, Y. Zhou, P. Li, X. Xu, Z. Yu, S. Quan, Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signalling pathway. Environ. Int. 147, 106298 (2021). https://doi.org/10.1016/j.envint.2020.106298

    Article  CAS  PubMed  Google Scholar 

  42. H. Lee, S. Lim, S. Yun, A. Yoon, G. Park, H. Yang, Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries. Clin. Exp. Reprod. Med. 39, 15–21 (2012). https://doi.org/10.5653/cerm.2012.39.1.15

    Article  PubMed  PubMed Central  Google Scholar 

  43. M. Saitoh, T. Yanase, H. Morinaga, M. Tanabe, Y.M. Mu, Y. Nishi, M. Nomura, T. Okabe, K. Goto, R. Takayanagi, H. Nawata, Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor ce ll line KGN. Biochem. Biophys. Res. Commun. 289, 198–204 (2001). https://doi.org/10.1006/bbrc.2001.5952

    Article  CAS  PubMed  Google Scholar 

  44. F. Zhang, P. Yang, L. Qin, J. Zhang, Adverse stimulation of 4-nonylphenol in abnormal reproductive organs of female chickens. Oncotarget 8(66), 110029–110038 (2017). https://doi.org/10.18632/oncotarget.21858

    Article  PubMed  PubMed Central  Google Scholar 

  45. Y.L. Low, A.M. Dunning, M. Dowsett, E. Folkerd, D. Doody, J. Taylor, A. Bhaniani, R. Luben, K.T. Khaw, N.J. Wareham, S.A. Bingham, Phytoestrogen exposure is associated with circulating sex hormone levels in postmenopausal women and interact with ESR1 and NR1I2 gene variants. Cancer Epidemiol. Biomark. Prev. 16, 1009–1016 (2007). https://doi.org/10.1158/1055-9965.EPI-06-0899

    Article  CAS  Google Scholar 

  46. M. Yamamoto, M. Shirai, K. Sugita, N. Nagai, Y. Miura, R. Mogi, K. Yamamoto, A. Tamura, K. Arishima, Effects of maternal exposure to diethylstilbestrol on the development of the reproductive system and thyroid function in male and female rat offspring. J. Toxicol. Sci. 28, 385–394 (2003). https://doi.org/10.2131/jts.28.385

    Article  CAS  PubMed  Google Scholar 

  47. A. Karpeta, A. Rak-Mardyła, J. Jerzak, E.L. Gregoraszczuk, Congener-specific action of PBDEs on steroid secretion, CYP17, 17β-HSD and CYP19 activity and protein expression in porcine ovarian follicles. Toxicol. Lett. 206, 258–263 (2011). https://doi.org/10.1016/j.toxlet.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  48. K.S. Kechagias, A. Semertzidou, A. Athanasiou, M. Paraskevaidi, M. Kyrgiou, Bisphenol-A and polycystic ovary syndrome: a review of the literature. Rev. Environ. Health 35(4), 323–331 (2020). https://doi.org/10.1515/reveh-2020-0032

    Article  CAS  PubMed  Google Scholar 

  49. L. Akın, M. Kendirci, F. Narin, S. Kurtoğlu, N. Hatipoğlu, F. Elmalı, Endocrine disruptors and polycystic ovary syndrome: phthalates. J. Clin. Res. Pediatr. Endocrinol. 12(4), 393–400 (2020). https://doi.org/10.4274/jcrpe.galenos.2020.2020.0037

    Article  PubMed  PubMed Central  Google Scholar 

  50. X.Y. Shi, Z. Wang, L. Liu, L.M. Feng, N. Li, S. Liu, H. Gao, Low concentrations of bisphenol A promote human ovarian cancer cell proliferation and glycolysis-based metabolism through the estrogen receptor-α pathway. Chemosphere 185, 361–367 (2017). https://doi.org/10.1016/j.chemosphere.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  51. M. Huang, X. Li, S. Jia, S. Liu, L. Fu, X. Jiang, M. Yang, Bisphenol AF induces apoptosis via estrogen receptor beta (ERβ) and ROS-ASK1-JNK MAPK pathway in human granulosa cell line KGN. Environ. Pollut. 270, 116051 (2021). https://doi.org/10.1016/j.envpol.2020.116051

    Article  CAS  PubMed  Google Scholar 

  52. C. Pivonello, G. Muscogiuri, A. Nardone, F. Garifalos, D.P. Provvisiero, N. Verde, C. de Angelis, A. Conforti, M. Piscopo, R.S. Auriemma, A. Colao, R. Pivonello, A. Bisphenol, an emerging threat to female fertility. Reprod. Biol. Endocrinol. 18, 22 (2020). https://doi.org/10.1186/s12958-019-0558-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O. Kishta, A. Adeeko, D. Li, T. Luu, J.R. Brawer, C. Morales, L. Hermo, B. Robaire, B.F. Hales, J. Barthelemy, D.G. Cyr, J.M. Trasler, In utero exposure to tributyltin chloride differentially alters male and female fetal gonad morphology and gene expression profiles in the Sprague-Dawley rat. Reprod. Toxicol. 23, 1–11 (2007). https://doi.org/10.1016/j.reprotox.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  54. V. Rouiller-Fabre, R. Habert, G. Livera, Effects of endocrine disruptors on the human fetal testis. Ann. Endocrinol. 75, 54–57 (2014). https://doi.org/10.1016/j.ando.2014.03.010

    Article  Google Scholar 

  55. Y.B. Wetherill, B.T. Akingbemi, J. Kanno, J.A. McLachlan, A. Nadal, C. Sonnenschein, C.S. Watson, R.T. Zoeller, S.M. Belcher, In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 24, 178–198 (2007). https://doi.org/10.1016/j.reprotox.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  56. Y. Gong, J. Wu, Y. Huang, S. Shen, X. Han, Nonylphenol induces apoptosis in rat testicular Sertoli cells via endoplasmic reticulum stress. Toxicol. Lett. 186, 84–95 (2009). https://doi.org/10.1016/j.toxlet.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  57. C. McKinnell, N. Atanassova, K. Williams, J.S. Fisher, M. Walker, K.J. Turner, T.K. Saunders, R.M. Sharpe, Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol. J. Androl. 22, 323–338 (2001)

    CAS  PubMed  Google Scholar 

  58. G. Yuan, Y. Liu, G. Liu, L. Wei, Y. Wen, S. Huang, Y. Guo, F. Zou, J. Cheng, Associations between semen phytoestrogens concentrations and semen quality in Chinese men. Environ. Int 129, 136–144 (2019). https://doi.org/10.1016/j.envint.2019.04.076

    Article  CAS  PubMed  Google Scholar 

  59. R.S. Tavares, F.C. Martins, P.J. Oliveira, J. Ramalho-Santos, F.P. Peixoto, Parabens in male infertility-is there a mitochondrial connection? Reprod. Toxicol. 27, 1–7 (2009). https://doi.org/10.1016/j.reprotox.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  60. M. Astiz, G.E. Hurtado de Catalfo, M.N. García, S.M. Galletti, A.L. Errecalde, M.J. de Alaniz, C.A. Marra, Pesticide-induced decrease in rat testicular steroidogenesis is differentially prevented by lipoate and tocopherol. Ecotoxicol. Environ. Saf. 91, 129–138 (2013). https://doi.org/10.1016/j.ecoenv.2013.01.022

    Article  CAS  PubMed  Google Scholar 

  61. D.K. Li, Z. Zhou, M. Miao, Y. He, J. Wang, J. Ferber, L.J. Herrinton, E. Gao, W. Yuan, Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 95, 625–630 (2011). https://doi.org/10.1016/j.fertnstert.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  62. N. Abdelouahab, Y. Ainmelk, L. Takser, Polybrominated diphenyl ethers and sperm quality. Reprod. Toxicol. 31, 546–550 (2011). https://doi.org/10.1016/j.reprotox.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  63. V.B. Mutwedu, A.W. Nyongesa, P.C. Azine, D.K. Chiregereza, V.H. Ngoumtsop, Y. Mugumaarhahama, R. Ayagirwe, Growth performance and reproductive function impairment of glyphosate-based herbicide in male guinea pig (Cavia porcellus). Vet. Med. Sci. 7(3), 1047–1055 (2021). https://doi.org/10.1002/vms3.443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Tait, R. Tassinari, F. Maranghi, A. Mantovani, Bisphenol A affects placental layers morphology and angiogenesis during early pregnancy phase in mice. J. Appl. Toxicol. 35(11), 1278–1291 (2015). https://doi.org/10.1002/jat.3176

    Article  CAS  PubMed  Google Scholar 

  65. M.A. Elmetwally, A.A. Halawa, Y.Y. Lenis, W. Tang, G. Wu, F.W. Bazer, Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod. Toxicol. 83, 73–79 (2019). https://doi.org/10.1016/j.reprotox.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  66. M. Ponniah, E.E. Billett, L.A. De Girolamo, Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem. Res. Toxicol. 28(9), 1693–1703 (2015). https://doi.org/10.1021/acs.chemrestox.5b00093

    Article  CAS  PubMed  Google Scholar 

  67. P. Wei, D. Ru, X. Li, D. Shi, M. Zhang, Q. Xu, H. Zhou, S. Wen, Exposure to environmental bisphenol A inhibits HTR-8/SVneo cell migration and invasion. J. Biomed. Res. 34(5), 369–378 (2020). https://doi.org/10.7555/JBR.34.20200013

    Article  PubMed  PubMed Central  Google Scholar 

  68. J. Troisi, C. Mikelson, S. Richards, S. Symes, D. Adair, F. Zullo, M. Guida, Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta 35(11), 947–952 (2014). https://doi.org/10.1016/j.placenta.2014.08.091

    Article  CAS  PubMed  Google Scholar 

  69. F. Leclerc, M.F. Dubois, A. Aris, Maternal, placental and fetal exposure to bisphenol A in women with and without preeclampsia. Hypertens. Preg. 33(3), 341–348 (2014). https://doi.org/10.3109/10641955.2014.892607

    Article  CAS  Google Scholar 

  70. W. Huo, W. Xia, Y. Wan, B. Zhang, A. Zhou, Y. Zhang, K. Huang, Y. Zhu, C. Wu, Y. Peng, M. Jiang, J. Hu, H. Chang, B. Xu, Y. Li, S. Xu, Maternal urinary bisphenol A levels and infant low birth weight: a nested case-control study of the Health Baby Cohort in China. Environ. Int. 85, 96–103 (2015). https://doi.org/10.1016/j.envint.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  71. Y.H. Chiu, L. Mínguez-Alarcón, J.B. Ford, M. Keller, E.W. Seely, C. Messerlian, J. Petrozza, P.L. Williams, X. Ye, A.M. Calafat, R. Hauser, T. James-Todd, Trimester-specific urinary bisphenol A concentrations and blood glucose levels among pregnant women from a fertility clinic. J. Clin. Endocrinol. Metab. 102(4), 1350–1357 (2017). https://doi.org/10.1210/jc.2017-00022

    Article  PubMed  PubMed Central  Google Scholar 

  72. V. Pergialiotis, P. Kotrogianni, E. Christopoulos-Timogiannakis, D. Koutaki, G. Daskalakis, N. Papantoniou, Bisphenol A and adverse pregnancy outcomes: a systematic review of the literature. J. Matern. Fetal Neonatal Med. 31(24), 3320–3327 (2018). https://doi.org/10.1080/14767058.2017.1368076

    Article  CAS  PubMed  Google Scholar 

  73. Z. Yu, Y. Han, R. Shen, K. Huang, Y.Y. Xu, Q.N. Wang, S.S. Zhou, D.X. Xu, F.B. Tao, Gestational di-(2-ethylhexyl) phthalate exposure causes fetal intrauterine growth restriction through disturbing placental thyroid hormone receptor signaling. Toxicol. Lett. 294, 1–10 (2018). https://doi.org/10.1016/j.toxlet.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  74. S. Kim, Y.H. Cho, I. Lee, W. Kim, S. Won, J.L. Ku, H.B. Moon, J. Park, S. Kim, G. Choi, K. Choi, Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: a CHECK cohort study. Environ. Int. 119, 398–406 (2018). https://doi.org/10.1016/j.envint.2018.06.039

    Article  CAS  PubMed  Google Scholar 

  75. A. Derfoul, F.J. Lin, E.M. Awumey, T. Kolodzeski, D.J. Hall, R.S. Tuan, Estrogenic endocrine disruptive components interfere with calcium handling and differentiation of human trophoblast cells. J. Cell Biochem. 89(4), 755–770 (2003). https://doi.org/10.1002/jcb.10558

    Article  CAS  PubMed  Google Scholar 

  76. V.L. Bosquiazzo, J. Varayoud, M. Muñoz-de-Toro, E.H. Luque, J.G. Ramos, Effects of neonatal exposure to bisphenol A on steroid regulation of vascular endothelial growth factor expression and endothelial cell proliferation in the adult rat uterus. Biol. Reprod. 82(1), 86–95 (2010). https://doi.org/10.1095/biolreprod.109.078543

    Article  CAS  PubMed  Google Scholar 

  77. P.W. Chu, Z.J. Yang, H.H. Huang, A.A. Chang, Y.C. Cheng, G.J. Wu, H.C. Lan, Low-dose bisphenol A activates the ERK signaling pathway and attenuates steroidogenic gene expression in human placental cells. Biol. Reprod. 98(2), 250–258 (2018). https://doi.org/10.1093/biolre/iox162

    Article  PubMed  Google Scholar 

  78. R. Alarcón, O.E. Rivera, P.I. Ingaramo, M.V. Tschopp, G.H. Dioguardi, M.M. Milesi, M. Muñoz-de-Toro, E.H. Luque, Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. Environ. Pollut. 265, 114874 (2020). https://doi.org/10.1016/j.envpol.2020.114874

    Article  CAS  PubMed  Google Scholar 

  79. V. Lorenz, G. Pacini, E.H. Luque, J. Varayoud, M.M. Milesi, Perinatal exposure to glyphosate or a glyphosate-based formulation disrupts hormonal and uterine milieu during the receptive state in rats. Food Chem. Toxicol. 143, 111560 (2020). https://doi.org/10.1016/j.fct.2020.111560

    Article  CAS  PubMed  Google Scholar 

  80. R.L. Ruhlen, K.L. Howdeshell, J. Mao, J.A. Taylor, F.H. Bronson, R.R. Newbold, W.V. Welshons, F.S. vom Saal, Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the “fetal estrogenization syndrome” and obesity in CD-1 mice. Environ. Health Perspect. 116, 322–328 (2008). https://doi.org/10.1289/ehp.10448

    Article  CAS  PubMed  Google Scholar 

  81. N. Chernis, P. Masschelin, A.R. Cox, S.M. Hartig, Bisphenol AF promotes inflammation in human white adipocytes. Am. J. Physiol. Cell Physiol. 318, 63–72 (2020). https://doi.org/10.1152/ajpcell.00175.2019

    Article  CAS  Google Scholar 

  82. H.X. Wang, Y. Zhou, C.X. Tang, J.G. Wu, Y. Chen, Q.W. Jiang, Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ. Health 11, 79 (2012). https://doi.org/10.1186/1476-069X-11-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. S. Kirchner, T. Kieu, C. Chow, S. Casey, B. Blumberg, Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol. 24(3), 526–539 (2010). https://doi.org/10.1210/me.2009-0261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. F. Grün, H. Watanabe, Z. Zamanian, L. Maeda, K. Arima, R. Cubacha, D.M. Gardiner, J. Kanno, T. Iguchi, B. Blumberg, Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20(9), 2141–2155 (2006). https://doi.org/10.1210/me.2005-0367

    Article  CAS  PubMed  Google Scholar 

  85. B. Leppert, S. Strunz, B. Seiwert, L. Schlittenbauer, R. Schlichting, C. Pfeiffer, S. Röder, M. Bauer, M. Borte, G.I. Stangl, T. Schöneberg, A. Schulz, I. Karkossa, U.E. Rolle-Kampczyk, L. Thürmann, M. von Bergen, B.I. Escher, K.M. Junge, T. Reemtsma, I. Lehmann, T. Polte, Maternal paraben exposure triggers childhood overweight development. Nat. Commun. 11, 561 (2020). https://doi.org/10.1038/s41467-019-14202-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M. La Merrill, E. Karey, E. Moshier, C. Lindtner, M.R. La Frano, J.W. Newman, C. Buettner, Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9(7), 103337 (2014). https://doi.org/10.1371/journal.pone.0103337

    Article  CAS  Google Scholar 

  87. M. Warner, A. Wesselink, K.G. Harley, A. Bradman, K. Kogut, B. Eskenazi, Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort. Am. J. Epidemiol. 179(11), 1312–1322 (2014). https://doi.org/10.1093/aje/kwu046

    Article  PubMed  PubMed Central  Google Scholar 

  88. P. Gigante, M. Berni, S. Bussolati, F. Grasselli, S. Grolli, R. Ramoni, G. Basini, Glyphosate affects swine ovarian and adipose stromal cell functions. Anim. Reprod. Sci. 195, 185–196 (2018). https://doi.org/10.1016/j.anireprosci.2018.05.023

    Article  CAS  PubMed  Google Scholar 

  89. B.C. Gladen, N.B. Ragan, W.J. Rogan, Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J. Pediatr. 136(4), 490–496 (2000). https://doi.org/10.1016/s0022-3476(00)90012-x

    Article  CAS  PubMed  Google Scholar 

  90. Y. Sakamoto, A. Naka, N. Ohara, K. Kondo, K. Iida, Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Mol. Nutr. Food Res. 58, 718–726 (2014). https://doi.org/10.1002/mnfr.201300482

    Article  CAS  PubMed  Google Scholar 

  91. R.R. Newbold, Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol. Appl Pharm. 199(2), 142–150 (2004). https://doi.org/10.1016/j.taap.2003.11.033

    Article  CAS  Google Scholar 

  92. H. MacKay, Z.R. Patterson, A. Abizaid, Perinatal exposure to low-dose bisphenol-a disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 158(4), 768–777 (2017). https://doi.org/10.1210/en.2016-1718

    Article  CAS  PubMed  Google Scholar 

  93. F. Ariemma, V. D’Esposito, D. Liguoro, F. Oriente, S. Cabaro, A. Liotti, I. Cimmino, M. Longo, F. Beguinot, P. Formisano, R. Valentino, Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One 11(3), 0150762 (2016). https://doi.org/10.1371/journal.pone.0150762

    Article  CAS  Google Scholar 

  94. R.J. Denver, R.M. Bonett, G.C. Boorse, Evolution of leptin structure and function. Neuroendocrinology 94(1), 21–38 (2011). https://doi.org/10.1159/000328435

    Article  CAS  PubMed  Google Scholar 

  95. A. Ewart-Toland, K. Mounzih, J. Qiu, F.F. Chehab, Effect of the genetic background on the reproduction of leptin-deficient obese mice. Endocrinology 140(2), 732–738 (1999). https://doi.org/10.1210/endo.140.2.6470

    Article  CAS  PubMed  Google Scholar 

  96. A. Pérez-Pérez, F. Sánchez-Jiménez, J. Maymó, J.L. Dueñas, C. Varone, V. Sánchez-Margalet, Role of leptin in female reproduction. Clin. Chem. Lab. Med. 53(1), 15–28 (2015). https://doi.org/10.1515/cclm-2014-0387

    Article  CAS  PubMed  Google Scholar 

  97. M. Zerani, C. Boiti, D. Zampini, G. Brecchia, C. Dall’Aglio, P. Ceccarelli, A. Gobbetti, Ob receptor in rabbit ovary and leptin in vitro regulation of corpora lutea. J. Endocrinol. 183(2), 279–288 (2004). https://doi.org/10.1677/joe.1.05507

    Article  CAS  PubMed  Google Scholar 

  98. M.P. Magariños, V. Sánchez-Margalet, M. Kotler, J.C. Calvo, C.L. Varone, Leptin promotes cell proliferation and survival of trophoblastic cells. Biol. Reprod. 76(2), 203–210 (2007). https://doi.org/10.1095/biolreprod.106.051391

    Article  CAS  PubMed  Google Scholar 

  99. Z.V. Wang, P.E. Scherer, Adiponectin, the past two decades. J. Mol. Cell Biol. 8(2), 93–100 (2016). https://doi.org/10.1093/jmcb/mjw011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. H. Fang, R.L. Judd, Adiponectin regulation and function. Compr. Physiol. 8(3), 1031–1063 (2018). https://doi.org/10.1002/cphy.c170046

    Article  PubMed  Google Scholar 

  101. M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J.G. Webster, Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Mol. Endocrinol. 22(3), 760–771 (2008). https://doi.org/10.1210/me.2007-0330

    Article  CAS  PubMed  Google Scholar 

  102. D. Lagaly, P. Aad, J. Grado-Ahuir, L. Hulsey, L. Spicer, Role of adiponectin in regulating ovarian theca and granulose cell function. Mol. Cell. Endocrinol. 284, 38–45 (2008). https://doi.org/10.1016/j.mce.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  103. J. Li, X.J. Ma, X. Wu, S.J. Si, C. Li, P.K. Yang, G.X. Li, X.J. Liu, Y.D. Tian, X.T. Kang, Adiponectin modulates steroid hormone secretion, granulosa cell proliferation and apoptosis via binding its receptors during hens’ high laying period. Poult. Sci. 100(7), 101197 (2021). https://doi.org/10.1016/j.psj.2021.101197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. E.A. Adu-Gyamfi, L.A. Fondjo, W.K.B.A. Owiredu, A. Czika, W. Nelson, J. Lamptey, Y.X. Wang, Y.B. Ding, The role of adiponectin in placentation and preeclampsia. Cell Biochem. Funct. 38(1), 106–117 (2020). https://doi.org/10.1002/cbf.3458

    Article  CAS  PubMed  Google Scholar 

  105. K. Bozaoglu, K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10), 4687–4694 (2007). https://doi.org/10.1210/en.2007-0175

    Article  CAS  PubMed  Google Scholar 

  106. N. Smolinska, M. Kiezun, K. Dobrzyn, E. Rytelewska, K. Kisielewska, M. Gudelska, E. Zaobidna, K. Bogus-Nowakowska, J. Wyrebek, K. Bors, G. Kopij, B. Kaminska, T. Kaminski, Expression of chemerin and its receptors in the porcine hypothalamus and plasma chemerin levels during the oestrous cycle and early pregnancy. Int. J. Mol. Sci. 20(16), 3887 (2019). https://doi.org/10.3390/ijms20051128

    Article  CAS  PubMed Central  Google Scholar 

  107. M. Diot, M. Reverchon, C. Rame, P. Froment, J.P. Brillard, S. Briere, G. Leveque, D. Guillaume, J. Dupont, Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod. Biol. Endocrinol. 13, 81 (2015). https://doi.org/10.1186/s12958-015-0081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. M. Reverchon, M. Cornuau, C. Rame, F. Guerif, D. Royere, J. Dupont, Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum. Reprod. 27(6), 1790–1800 (2012). https://doi.org/10.1093/humrep/des089

    Article  CAS  PubMed  Google Scholar 

  109. M. Reverchon, M.J. Bertoldo, C. Rame, P. Froment, J. Dupont, CHEMERIN (RARRES2) decreases in vitrogranulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biol. Reprod. 90(5), 102 (2014). https://doi.org/10.1095/biolreprod.113.117044

    Article  CAS  PubMed  Google Scholar 

  110. K. Tatemoto, M. Hosoya, Y. Habata, R. Fujii, T. Kakegawa, M.X. Zou, Y. Kawamata, S. Fukusumi, S. Hinuma, C. Kitada, T. Kurokawa, H. Onda, M. Fujino, Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 251, 471–476 (1998). https://doi.org/10.1006/bbrc.1998.9489

    Article  CAS  PubMed  Google Scholar 

  111. A.M. O’Carroll, S.J. Lolait, L.E. Harris, G.R. Pope, The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 219(1), 13–35 (2013). https://doi.org/10.1530/JOE-13-0227

    Article  CAS  Google Scholar 

  112. A. Rak, E. Drwal, C. Rame, K. Knapczyk-Stwora, M. Slomczynska, J. Dupont, E.L. Gregoraszczuk, Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology 96, 126–135 (2017). https://doi.org/10.1016/j.theriogenology.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  113. M. Różycka, P. Kurowska, M. Grzesiak, M. Kotula-Balak, W. Tworzydło, C. Rame, E. Gregoraszczuk, J. Dupont, A. Rak, Apelin and apelin receptor at different stages of corpus luteum development and effect of apelin on progesterone secretion and 3β-hydroxysteroid dehydrogenase (3β-HSD) in pigs. Anim. Reprod. Sci. 192, 251–260 (2018). https://doi.org/10.1016/j.anireprosci.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  114. J. Roche, C. Rame, M. Reverchon, N. Mellouk, A. Rak, P. Froment, J. Dupont, Apelin (APLN) regulates progesterone secretion and oocyte maturation in bovine ovarian cells. Reproduction 153(5), 589–603 (2017). https://doi.org/10.1530/REP-16-0677

    Article  CAS  PubMed  Google Scholar 

  115. T. Shimizu, N. Kosaka, C. Murayama, M. Tetsuka, A. Miyamoto, Apelin and APJ receptor expression in granulosa and theca cells during different stages of follicular development in the bovine ovary: Involvement of apoptosis and hormonal regulation. Anim. Reprod. Sci. 116, 28–37 (2009). https://doi.org/10.1016/j.anireprosci.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  116. K. Tatemoto, K. Takayama, M.X. Zou, I. Kumaki, W. Zhang, K. Kumano, M. Fujimiya, The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pep. 99, 87–92 (2001). https://doi.org/10.1016/s0167-0115(01)00236-1

    Article  CAS  Google Scholar 

  117. M. Dawid, E. Mlyczynska, P. Kurowska, M. Sierpowski, A. Rak, Apelin decreased placental hormone secretion by human trophoblast BeWo cells via apelin receptor, protein kinase A and extracellular signal-regulated kinases 1/2 activation. J. Physiol. Pharmacol. 70(6), 895–907 (2019). https://doi.org/10.26402/jpp.2019.6.08

    Article  CAS  Google Scholar 

  118. E. Mlyczyńska, M. Myszka, P. Kurowska, M. Dawid, T. Milewicz, M. Bałajewicz-Nowak, P. Kowalczyk, A. Rak, Anti-apoptotic effect of apelin in human placenta: studies on BeWo cells and villous explants from third-trimester human pregnancy. Int. J. Mol. Sci. 22(5), 2760 (2021). https://doi.org/10.3390/ijms22052760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. M.S. Jamaluddin, S.M. Weakley, Q. Yao, C. Chen, Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharm. 165(3), 622–632 (2012). https://doi.org/10.1111/j.1476-5381.2011.01369.x

    Article  CAS  Google Scholar 

  120. D. Tripathi, S. Kant, S. Pandey, N.Z. Ehtesham, Resistin in metabolism, inflammation, and disease. FEBS J. 287(15), 3141–3149 (2020). https://doi.org/10.1111/febs.15322

    Article  CAS  PubMed  Google Scholar 

  121. A. Rak-Mardyła, M. Duda, E.Ł. Gregoraszczuk, A role for resistin in the ovary during the estrous cycle. Horm. Metab. Res. 46(7), 493–498 (2014). https://doi.org/10.1055/s-0034-1370909

    Article  CAS  PubMed  Google Scholar 

  122. A. Rak-Mardyła, M. Durak, E.L. Gregoraszczuk, Effects of resistin on porcine ovarian follicle steroidogenesis in prepubertal animals: an in vitro study. Reprod. Biol. Endocrinol. 11, 45 (2013). https://doi.org/10.1186/1477-7827-11-45

    Article  PubMed  PubMed Central  Google Scholar 

  123. V. Maillard, P. Froment, C. Rame, S. Uzbekova, S. Elis, J. Dupont, Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 141(4), 467–479 (2011). https://doi.org/10.1530/REP-10-0419

    Article  CAS  PubMed  Google Scholar 

  124. A. Rak, E. Drwal, A. Wróbel, E.Ł. Gregoraszczuk, Resistin is a survival factor for porcine ovarian follicular cells. Reproduction 150(4), 343–355 (2015). https://doi.org/10.1530/REP-15-0255

    Article  CAS  PubMed  Google Scholar 

  125. P. Kurowska, M. Sroka, M. Dawid, E. Mlyczyńska, N. Respekta, M. Jurek, D. Klimczyk, M. Grzesiak, J. Dupont, A. Rak, Expression and role of resistin on steroid secretion in the porcine corpus luteum. Reproduction 162(4), 237–248 (2021). https://doi.org/10.1530/REP-21-0236

    Article  CAS  PubMed  Google Scholar 

  126. R. Tassinari, L. Narciso, S. Tait, L. Busani, A. Martinelli, A. Di Virgilio, F. Carli, A. Deodati, C. La Rocca, F. Maranghi, Juvenile toxicity rodent model to study toxicological effects of bisphenol A (BPA) at dose levels derived from italian children biomonitoring study. Toxicol. Sci. 173, 387–401 (2020). https://doi.org/10.1093/toxsci/kfz226

    Article  CAS  PubMed  Google Scholar 

  127. B.M. Angle, R.P. Do, D. Ponzi, R.W. Stahlhut, B.E. Drury, S.C. Nagel, W.V. Welshons, C.L. Besch-Williford, P. Palanza, S. Parmigiani, F.S. vom Saal, J.A. Taylor, Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. 42, 256–268 (2013). https://doi.org/10.1016/j.reprotox.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  128. T. Kidani, S. Kamei, J. Miyawaki, J. Aizawa, K. Sakayama, H. Masuno, Bisphenol A downregulates Akt signaling and inhibits adiponectin production and secretion in 3T3-L1 adipocytes. J. Atheroscler. Thromb. 17, 834–43 (2010). https://doi.org/10.5551/jat.4051

    Article  CAS  PubMed  Google Scholar 

  129. C. Menale, A. Grandone, C. Nicolucci, G. Cirillo, S. Crispi, A. Di Sessa, P. Marzuillo, S. Rossi, D.G. Mita, L. Perrone, N. Diano, E. Miraglia Del Giudice, Bisphenol A is associated with insulin resistance and modulates adiponectin and resistin gene expression in obese children. Pediatr. Obes. 12, 380–387 (2017). https://doi.org/10.1111/ijpo.12154

    Article  PubMed  Google Scholar 

  130. D.J. Watkins, K.E. Peterson, K.K. Ferguson, A. Mercado-García, M. Tamayo Ortiz, A. Cantoral, J.D. Meeker, M.M. Téllez-Rojo, Relating phthalate and BPA exposure to metabolism in peripubescence: the role of exposure timing, sex, and puberty. J. Clin. Endocrinol. Metab. 101, 79–88 (2016). https://doi.org/10.1210/jc.2015-2706

    Article  CAS  PubMed  Google Scholar 

  131. J. Ashley-Martin, L. Dodds, T.E. Arbuckle, A.S. Ettinger, G.D. Shapiro, M. Fisher, A.S. Morisset, S. Taback, M.F. Bouchard, P. Monnier, R. Dallaire, W.D. Fraser, A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environ. Health 13, 84 (2014). https://doi.org/10.1186/1476-069X-13-84

    Article  PubMed  PubMed Central  Google Scholar 

  132. M. Rönn, L. Lind, J. Örberg, J. Kullberg, S. Söderberg, A. Larsson, L. Johansson, H. Ahlström, P.M. Lind, Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere 112, 42–48 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  133. L. Ceotto Freitas-Lima, E. Merlo, M. Campos Zicker, J.M. Navia-Pelaez, M. de Oliveira, L. Dos Santos Aggum Capettini, C.R. Nogueira, A. Versiani Matos Ferreira, S.H. Sousa Santos, J. Bernardes Graceli, Tributyltin impacts in metabolic syndrome development through disruption of angiotensin II receptor signaling pathways in white adipose tissue from adult female rats. Toxicol. Lett. 299, 21–31 (2018). https://doi.org/10.1016/j.toxlet.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  134. C. Hao, X. Cheng, J. Guo, H. Xia, X. Ma, Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front. Biosci. (Elite Ed.) 5, 725–733 (2013). https://doi.org/10.2741/e653

    Article  Google Scholar 

  135. L. Zhou, H. Chen, Q. Xu, X. Han, Y. Zhao, X. Song, T. Zhao, L. Ye, The effect of di-2-ethylhexyl phthalate on inflammation and lipid metabolic disorder in rats. Ecotoxicol. Environ. Saf. 170, 391–398 (2019). https://doi.org/10.1016/j.ecoenv.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  136. A. Rak, K. Zajda, E.Ł. Gregoraszczuk, Endocrine disrupting compounds modulates adiponectin secretion, expression of its receptors and action on steroidogenesis in ovarian follicle. Reprod. Toxicol. 69, 204–211 (2017). https://doi.org/10.1016/j.reprotox.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  137. R.G. Ahmed, Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. J. Endocrinol. 219, 205–215 (2013). https://doi.org/10.1530/JOE-13-0302

    Article  CAS  PubMed  Google Scholar 

  138. J.E. Lim, S.H. Jee, Association between serum levels of adiponectin and polychlorinated biphenyls in Korean men and women. Endocrine 48, 211–7 (2015). https://doi.org/10.1007/s12020-014-0231-0

    Article  CAS  PubMed  Google Scholar 

  139. G. Howell III, L. Mangum, Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicol. Vitr. 25(1), 394–402 (2011). https://doi.org/10.1016/j.tiv.2010.10.015

    Article  CAS  Google Scholar 

  140. M.J. Lee, H. Lin, C.W. Liu, M.H. Wu, W.J. Liao, H.H. Chang, H.C. Ku, Y.S. Chien, W.H. Ding, Y.H. Kao, Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am. J. Physiol. Cell Physiol. 294(6), 1542–1551 (2008). https://doi.org/10.1152/ajpcell.00403.2007

    Article  CAS  Google Scholar 

  141. M. Hoffmann, A. Rak, A. Ptak, Bisphenol A and its derivatives decrease expression of chemerin, which reverses its stimulatory action in ovarian cancer cells. Toxicol. Lett. 291, 61–69 (2018). https://doi.org/10.1016/j.toxlet.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  142. M. Hoffmann, E. Fiedor, A. Ptak, Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol. Lett. 269, 15–22 (2017). https://doi.org/10.1016/j.toxlet.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  143. W.C. Chou, J.L. Chen, C.F. Lin, Y.C. Chen, F.C. Shih, C.Y. Chuang, Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ. Health 10, 94 (2011). https://doi.org/10.1186/1476-069X-10-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. G.C. Sena, L.C. Freitas-Lima, E. Merlo, P.L. Podratz, J.F. de Araújo, P.A. Brandão, M.T. Carneiro, M.C. Zicker, A.V. Ferreira, C.M. Takiya, C.M. de Lemos Barbosa, M.M. Morales, A.P. Santos-Silva, L. Miranda-Alves, I.V. Silva, J.B. Graceli, Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol. Appl Pharm. 319, 22–38 (2017). https://doi.org/10.1016/j.taap.2017.01.021

    Article  CAS  Google Scholar 

  145. A.V. Sirotkin, R. Alexa, A. Kádasi, A. Štochmaľová, M. Morovič, J. Laurinčik, A.H. Harrath, R. Grossmann, The isoflavone daidzein directly affects porcine ovarian cell functions and modifies the effect of follicle-stimulating hormone. J. Anim. Physiol. Anim. Nutr. (Berl.). 101, 127–135 (2017). https://doi.org/10.1111/jpn.12520

    Article  CAS  PubMed  Google Scholar 

  146. D. Franssen, Y.S. Ioannou, A. Alvarez-real, A. Gerard, J.K. Mueller, S. Heger, J.P. Bourguignon, A.S. Parent, Pubertal timing after neonatal diethylstilbestrol exposure in female rats: neuroendocrine vs peripheral effects and additive role of prenatal food restriction. Reprod. Toxicol. 44, 63–72 (2014). https://doi.org/10.1016/j.reprotox.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  147. J. Boberg, S. Metzdorff, R. Wortziger, M. Axelstad, L. Brokken, A.M. Vinggaard, M. Dalgaard, C. Nellemann, Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 250, 75–81 (2008). https://doi.org/10.1016/j.tox.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  148. B. Wahlang, J. Jin, J.E. Hardesty, K.Z. Head, H. Shi, K.C. Falkner, R.A. Prough, C.M. Klinge, M.C. Cave, Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food Chem. Toxicol. 129, 64–76 (2019). https://doi.org/10.1016/j.fct.2019.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. S. Otokozawa, R. Tanaka, H. Akasaka, E. Ito, S. Asakura, H. Ohnishi, S. Saito, T. Miura, T. Saito, M. Mori, Associations of serum isoflavone, adiponectin and insulin levels with risk for epithelial ovarian cancer: results of a case-control study. Asian Pac. J. Cancer Prev. 16, 4987–4991 (2015). https://doi.org/10.7314/apjcp.2015.16.12.4987

    Article  PubMed  Google Scholar 

Download references

Funding

Support was received from Région Centre Val de Loire (HAPOFERTI project number 32000858). P.K. obtained funding as part of the PhD scholarship ETIUDA programme: 2020/36/T/NZ9/00264.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: J.D., A.R.; Literature Search, Writing—Original Draft: P.K., E.M., M.D., N.R., K.P., L.S., J.D., A.R.; Writing—Review & Editing: P.K., J.D., A.R.; Supervision: A.R. All authors read and accepted final version of the manuscript.

Corresponding author

Correspondence to Agnieszka Rak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurowska, P., Mlyczyńska, E., Dawid, M. et al. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 78, 205–218 (2022). https://doi.org/10.1007/s12020-022-03061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03061-4

Keywords

Navigation