Skip to main content
Log in

Combination of pasireotide and octreotide: effects on GH and IGF-I secretion and glucose metabolism in healthy volunteers

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To assess the pharmacokinetics, pharmacodynamics and tolerability of different doses of octreotide and pasireotide (subcutaneous [sc] and long-acting release [LAR]) when co-administered in healthy volunteers.

Methods

This was an exploratory, Phase I, single-centre study. Healthy adults were enrolled in a staggered approach into seven cohorts to receive octreotide and pasireotide (sc and LAR formulations), alone or in combination. Plasma drug concentrations, growth hormone (GH), insulin-like growth factor I (IGF-I), and plasma glucose were assessed at baseline, immediately after sc treatment, and 21 and 28 days after LAR treatment.

Results

Of 88 enrolled subjects, 52 and 82 participated in sc and LAR dosing phases, respectively. There were no relevant pharmacokinetic interactions between octreotide and pasireotide. In combination, pasireotide sc (150 µg) and octreotide sc (100/300 µg) resulted in numerically greater reductions in insulin levels and a higher incidence of AEs than either single agent; the rapid (within 1 h) increase in plasma glucose after pasireotide was delayed with combination treatment. Octreotide sc and pasireotide sc, alone or in combination, reduced IGF-I levels and led to undetectable GH levels in most subjects. During the LAR phase, addition of a low dose of pasireotide (5 mg) to a standard dose of octreotide (20 mg) resulted in an ~2-fold reduction in median IGF-I versus octreotide 20 mg 21 days post-dose; this effect was numerically greater than seen for pasireotide 20 mg alone. Peak plasma glucose was substantially lower after LAR than sc dosing. Interestingly, glucose levels were also numerically lower in the pasireotide 5 mg plus octreotide 20 mg group than for 20 mg of octreotide or pasireotide alone. AEs were less frequent after LAR than sc dosing.

Conclusions

Combined low doses of pasireotide LAR (5 mg) and octreotide LAR (10–30 mg) provided greater suppression of IGF-I than either single agent and did not increase blood glucose or incidence of AEs versus either agent alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Novartis is committed to sharing with qualified external researchers access to patient-level data and supporting clinical documents from eligible studies. These requests are reviewed and approved by an independent review panel on the basis of scientific merit. All data provided are anonymized to respect the privacy of patients who have participated in the trial, in line with applicable laws and regulations. This trial data availability is in accordance with the criteria and process described on www.clinicalstudydatarequest.com.

References

  1. P.U. Freda, Somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 87(7), 3013–3018 (2002). https://doi.org/10.1210/jcem.87.7.8665

    Article  CAS  PubMed  Google Scholar 

  2. Y.C. Patel, Somatostatin and its receptor family. Front. Neuroendocrinol. 20(3), 157–198 (1999). https://doi.org/10.1006/frne.1999.0183

    Article  CAS  PubMed  Google Scholar 

  3. H.A. Schmid, J. Brueggen, Effects of somatostatin analogs on glucose homeostasis in rats. J. Endocrinol. 212(1), 49–60 (2012). https://doi.org/10.1530/JOE-11-0224

    Article  CAS  PubMed  Google Scholar 

  4. J. van der Hoek, M. Waaijers, P.M. van Koetsveld, D. Sprij-Mooij, R.A. Feelders, H.A. Schmid, P. Schoeffter, D. Hoyer, D. Cervia, J.E. Taylor, M.D. Culler, S.W. Lamberts, L.J. Hofland, Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am. J. Physiol. Endocrinol. Metab. 289(2), E278–E287 (2005). https://doi.org/10.1152/ajpendo.00004.2005

    Article  CAS  PubMed  Google Scholar 

  5. K. Oberg, Management of neuroendocrine tumours. Ann. Oncol. 15(Suppl 4), iv293–iv298 (2004). https://doi.org/10.1093/annonc/mdh942

    Article  PubMed  Google Scholar 

  6. L. Katznelson, E.R. Laws Jr, S. Melmed, M.E. Molitch, M.H. Murad, A. Utz, J.A.H. Wass, Acromegaly: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 99(11), 3933–3951 (2014). https://doi.org/10.1210/jc.2014-2700

    Article  CAS  PubMed  Google Scholar 

  7. S. Melmed, M.D. Bronstein, P. Chanson, A. Klibanski, F.F. Casanueva, J.A.H. Wass, C.J. Strasburger, A. Luger, D.R. Clemmons, A. Giustina, A consensus statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 14(9), 552–561 (2018). https://doi.org/10.1038/s41574-018-0058-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Bruns, I. Lewis, U. Briner, G. Meno-Tetang, G. Weckbecker, SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 146(5), 707–716 (2002). https://doi.org/10.1530/eje.0.1460707

    Article  CAS  PubMed  Google Scholar 

  9. M.R. Gadelha, M.D. Bronstein, T. Brue, M. Coculescu, M. Fleseriu, M. Guitelman, V. Pronin, G. Raverot, I. Shimon, K.K. Lievre, J. Fleck, M. Aout, A.M. Pedroncelli, A. Colao, Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2(11), 875–884 (2014). https://doi.org/10.1016/s2213-8587(14)70169-x

    Article  CAS  PubMed  Google Scholar 

  10. A. Colao, M.D. Bronstein, P. Freda, F. Gu, C.C. Shen, M. Gadelha, M. Fleseriu, A.J. van der Lely, A.J. Farrall, K. Hermosillo Resendiz, M. Ruffin, Y. Chen, M. Sheppard, C.S.G. Pasireotide, Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J. Clin. Endocrinol. Metab. 99(3), 791–799 (2014). https://doi.org/10.1210/jc.2013-2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Colao, S. Petersenn, J. Newell-Price, J.W. Findling, F. Gu, M. Maldonado, U. Schoenherr, Dipl.-Biol., D. Mills, L.R. Salgado, B.M.K. Biller, A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl J. Med. 366(10), 914–924 (2012). https://doi.org/10.1056/NEJMoa1105743

    Article  CAS  PubMed  Google Scholar 

  12. A. Lacroix, F. Gu, W. Gallardo, R. Pivonello, Y. Yu, P. Witek, M. Boscaro, R. Salvatori, M. Yamada, L. Tauchmanova, M. Roughton, S. Ravichandran, S. Petersenn, B.M.K. Biller, J. Newell-Price, G. Arnaldi, H.S. Asha, T. Bandgar, A. Barkan, H. Biering, M. Bex, M. Bolanowski, M.D. Bronstein, T. Brue, D. Bruera, F. Cavagnini, A. Comlekci, C. De Block, T. Delibasi, C. Fajardo-Montañana, R.A. Feelders, M. Fleseriu, M.R. Gadelha, E.B. Geer, A. Heaney, G. Houde, A. Ichihara, S.A. Imran, A. Ioachimescu, P. Kadioglu, Y. Li, P. Loli, M. Nishiyama, L. Rozhinskaya, M. Ruchala, Y. Saitoh, C. Schöfl, J. Schopohl, A. Shimatsu, C. Shimizu, T. Snabboon, P. Snyder, N. Suzaki, A. Tabarin, Y. Takahashi, S.T. Britto, G. T’Sjoen, M.-C. Vantyghem, B. Velkeniers, S. Webb, S. Yamada, Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol. 6(1), 17–26 (2018). https://doi.org/10.1016/s2213-8587(17)30326-1

    Article  CAS  PubMed  Google Scholar 

  13. U. Kumar, R. Sasi, S. Suresh, A. Patel, M. Thangaraju, P. Metrakos, S.C. Patel, Y.C. Patel, Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 48(1), 77–85 (1999). https://doi.org/10.2337/diabetes.48.1.77

    Article  CAS  PubMed  Google Scholar 

  14. R.R. Henry, T.P. Ciaraldi, D. Armstrong, P. Burke, M. Ligueros-Saylan, S. Mudaliar, Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J. Clin. Endocrinol. Metab. 98(8), 3446–3453 (2013). https://doi.org/10.1210/jc.2013-1771

    Article  CAS  PubMed  Google Scholar 

  15. S. Chiloiro, A. Giampietro, F. Visconti, L. Rossi, F. Donfrancesco, C.M. Fleseriu, F. Mirra, A. Pontecorvi, A. Giustina, M. Fleseriu, L. De Marinis, A. Bianchi, Glucose metabolism outcomes in acromegaly patients on treatment with pasireotide-LAR or pasireotide-LAR plus pegvisomant. Endocrine 73(3), 658–666 (2021). https://doi.org/10.1007/s12020-021-02711-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M.R. Gadelha, F. Gu, M.D. Bronstein, T.C. Brue, M. Fleseriu, I. Shimon, A.J. van der Lely, S. Ravichandran, A. Kandra, A.M. Pedroncelli, A.A.L. Colao, Risk factors and management of pasireotide-associated hyperglycemia in acromegaly. Endocr. Connect. 9(12), 1178–1190 (2020). https://doi.org/10.1530/EC-20-0361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Colao, R.S. Auriemma, R. Pivonello, L. Kasuki, M.R. Gadelha, Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary 19(3), 235–247 (2016). https://doi.org/10.1007/s11102-015-0684-z

    Article  CAS  PubMed  Google Scholar 

  18. M. Kugita, K. Nishii, T. Yamaguchi, A. Suzuki, Y. Yuzawa, S. Horie, E. Higashihara, S. Nagao, Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. PLoS ONE 12(5), e0177934 (2017). https://doi.org/10.1371/journal.pone.0177934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D.S. Wald, M. Law, J.K. Morris, J.P. Bestwick, N.J. Wald, Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am. J. Med. 122(3), 290–300 (2009). https://doi.org/10.1016/j.amjmed.2008.09.038

    Article  PubMed  Google Scholar 

  20. L. Kuritzky, G.P. Samraj, Enhanced glycemic control with combination therapy for type 2 diabetes in primary care. Diabetes Ther. 2(3), 162–177 (2011). https://doi.org/10.1007/s13300-011-0006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Tiberg, J. Roberts, C. Cervin, M. Johnsson, S. Sarp, A.P. Tripathi, M. Linden, Octreotide s.c. depot provides sustained octreotide bioavailability and similar IGF-1 suppression to octreotide LAR in healthy volunteers. Br. J. Clin. Pharmacol. 80(3), 460–472 (2015). https://doi.org/10.1111/bcp.12698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. F. Tiberg, S. Glantz, K. Strangarden, C. Darstein, J. Eisinger, L. Tauchmanova, A. Breitschaft, A first-in-human pharmacokinetic, safety, and tolerability study of pasireotide subcutaneous depot. Endocrine Abstracts 56, P856 (2018)

    Google Scholar 

  23. J. Amaru, F. Barbieri, M. Arvigo, A. Solari, A. Bajetto, F. Nista, C. Campana, G. Gaggero, A. Prior, D. Criminelli Rossi, G. Zona, D. Ferone, T. Florio, F. Gatto, Octreotide and pasireotide combination treatment in somatotroph tumor cells: predominant role of SST2 in mediating ligand effects. Cancers 13(8) (2021). https://doi.org/10.3390/cancers13081816

  24. R. Attanasio, A. Mainolfi, F. Grimaldi, R. Cozzi, M. Montini, C. Carzaniga, S. Grottoli, L. Cortesi, M. Albizzi, R.M. Testa, L. Fatti, D. De Giorgio, C. Scaroni, F. Cavagnini, P. Loli, G. Pagani, E. Ghigo, Somatostatin analogs and gallstones: a retrospective survey on a large series of acromegalic patients. J. Endocrinol. Investig. 31(8), 704–710 (2008). https://doi.org/10.1007/BF03346419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals Corporation. We thank Robert Jenn Ph.D., Mudskipper Business Ltd, for medical writing assistance with this paper. We also thank the site investigators, study coordinators and subjects who participated in the study.

Funding

This study was sponsored by Novartis Pharma AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libuse Tauchmanova.

Ethics declarations

Conflict of interest

L.T. is a former employee of Novartis. A.B. is an employee of Parexel International GmbH; Parexel International GmbH was paid by Novartis Pharma AG for assistance in conducting the study. G.H., K.T.H., S.C., C.D., M.P., E.D., G.G. and H.A.S. are employees of Novartis. A.M.P. is a former employee of Novartis and a current employee of Recordati.

Ethical approval

The protocol and all amendments were reviewed and approved by the Berlin State Ethics Committee (Turmstraße 21, Haus A, Berlin 10559, Germany). The study was conducted according to the ICH E6 Guideline for Good Clinical Practice and the ethical principles of the Declaration of Helsinki.

Consent to participate

All subjects provided written consent to participate.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauchmanova, L., Breitschaft, A., Holder, G. et al. Combination of pasireotide and octreotide: effects on GH and IGF-I secretion and glucose metabolism in healthy volunteers. Endocrine 75, 537–548 (2022). https://doi.org/10.1007/s12020-021-02908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02908-6

Keywords

Navigation