Skip to main content

Advertisement

Log in

Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In pituitary adenoma (PA), invasiveness is the main cause of recurrence and poor prognosis. Thus, identifying specific biomarkers for diagnosis and effective treatment of invasive PAs is of great clinical significance. In this study, from the Gene Expression Omnibus database, we obtained and combined several microarrays of PA by the “sva” R package. Weighted gene co-expression network analysis was performed to construct a scale-free topology model and analyze the relationships between the modules and clinical traits. Our analysis results indicated that three key modules (dark turquoise, saddle brown, and steel blue) were associated with the invasiveness of PA. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Ontology analysis were performed for the functional annotation of the key modules. In addition, the hub genes in the three modules were identified and screened by differential expression analysis between normal samples and PA samples. Three upregulated differentially expressed genes (DGAT2, PIGZ, and DHRS2) were identified. The Fisher’s exact test and receiver operating characteristic curve were used to validate the capability of these genes to distinguish invasive traits, and transcription factor interaction networks were used to further explore the underlying mechanisms of the three genes. Moreover, a lower expression level of DGAT2 in invasive PA tissue than in noninvasive PA tissue was validated by quantitative reverse transcription-polymerase chain reaction. In general, this study contributes to potential molecular biomarkers of invasive PAs and provides a broader perspective for diagnosis and new therapeutic targets for the invasive PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.S. Barnholtz-Sloan, Q.T. Ostrom, D. Cote, Epidemiology of brain tumors. Neurol. Clin. 36(3), 395–419 (2018). https://doi.org/10.1016/j.ncl.2018.04.001

    Article  PubMed  Google Scholar 

  2. E.D. Aflorei, M. Korbonits, Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol 117(3), 379–394 (2014). https://doi.org/10.1007/s11060-013-1354-5

    Article  PubMed  Google Scholar 

  3. B.W. Scheithauer, K.T. Kovacs, E.R. Laws Jr., R.V. Randall, Pathology of invasive pituitary tumors with special reference to functional classification. J. Neurosurg. 65(6), 733–744 (1986). https://doi.org/10.3171/jns.1986.65.6.0733

    Article  CAS  PubMed  Google Scholar 

  4. K. Thapar, K. Kovacs, B.W. Scheithauer, L. Stefaneanu, E. Horvath, P.J. Pernicone, D. Murray, E.R. Laws Jr., Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(1), 99–106 (1996). https://doi.org/10.1097/00006123-199601000-00024

    Article  CAS  PubMed  Google Scholar 

  5. B.P. Meij, M.B. Lopes, D.B. Ellegala, T.D. Alden, E.R. Laws Jr, The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J. Neurosurg. 96(2), 195–208 (2002). https://doi.org/10.3171/jns.2002.96.2.0195

    Article  PubMed  Google Scholar 

  6. G.A. Kaltsas, P. Nomikos, G. Kontogeorgos, M. Buchfelder, A.B. Grossman, Clinical review: diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90(5), 3089–3099 (2005). https://doi.org/10.1210/jc.2004-2231

    Article  CAS  PubMed  Google Scholar 

  7. M. Buchfelder, Management of aggressive pituitary adenomas: current treatment strategies. Pituitary 12(3), 256–260 (2009). https://doi.org/10.1007/s11102-008-0153-z

    Article  PubMed  Google Scholar 

  8. A.I. McCormack, J.A. Wass, A.B. Grossman, Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur. J. Clin. Invest 41(10), 1133–1148 (2011). https://doi.org/10.1111/j.1365-2362.2011.02520.x

    Article  CAS  PubMed  Google Scholar 

  9. G. Raverot, F. Castinetti, E. Jouanneau, I. Morange, D. Figarella-Branger, H. Dufour, J. Trouillas, T. Brue, Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin. Endocrinol. 76(6), 769–775 (2012). https://doi.org/10.1111/j.1365-2265.2012.04381.x

    Article  CAS  Google Scholar 

  10. M.B.S. Lopes, The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 134(4), 521–535 (2017). https://doi.org/10.1007/s00401-017-1769-8

    Article  CAS  PubMed  Google Scholar 

  11. C. Dai, X. Liu, W. Ma, R. Wang, The treatment of refractory pituitary adenomas. Front. Endocrinol. 10, 334 (2019). https://doi.org/10.3389/fendo.2019.00334

    Article  Google Scholar 

  12. Q. Yang, X. Li, Molecular network basis of invasive pituitary adenoma: a review. Front. Endocrinol. 10, 7 (2019). https://doi.org/10.3389/fendo.2019.00007

    Article  Google Scholar 

  13. S. Chiloiro, F. Doglietto, B. Trapasso, D. Iacovazzo, A. Giampietro, F. Di Nardo, C. de Waure, L. Lauriola, A. Mangiola, C. Anile, G. Maira, L. De Marinis, A. Bianchi, Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2), 143–150 (2015). https://doi.org/10.1159/000375448

    Article  CAS  PubMed  Google Scholar 

  14. C.P. Miermeister, S. Petersenn, M. Buchfelder, R. Fahlbusch, D.K. Ludecke, A. Holsken, M. Bergmann, U.J. Knappe, V.H. Hans, J. Flitsch, W. Saeger, R. Buslei, Erratum: histological criteria for atypical pituitary adenomas–data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol. Commun. 4, 21 (2016). https://doi.org/10.1186/s40478-016-0290-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Di Ieva, F. Rotondo, L.V. Syro, M.D. Cusimano, K. Kovacs, Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat. Rev. Endocrinol. 10(7), 423–435 (2014). https://doi.org/10.1038/nrendo.2014.64

    Article  CAS  PubMed  Google Scholar 

  16. Y. Yang, L. Han, Y. Yuan, J. Li, N. Hei, H. Liang, Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 5, 3231 (2014). https://doi.org/10.1038/ncomms4231

    Article  CAS  PubMed  Google Scholar 

  17. G. Fiscon, F. Conte, V. Licursi, S. Nasi, P. Paci, Computational identification of specific genes for glioblastoma stem-like cells identity. Sci. Rep. 8(1), 7769 (2018). https://doi.org/10.1038/s41598-018-26081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Falcone, F. Conte, G. Fiscon, V. Pecce, M. Sponziello, C. Durante, L. Farina, S. Filetti, P. Paci, A. Verrienti, BRAF(V600E)-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine 64(2), 406–413 (2019). https://doi.org/10.1007/s12020-019-01890-4

    Article  CAS  PubMed  Google Scholar 

  19. S. van Dam, U. Vosa, A. van der Graaf, L. Franke, J.P. de Magalhaes, Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 19(4), 575–592 (2018). https://doi.org/10.1093/bib/bbw139

    Article  CAS  PubMed  Google Scholar 

  20. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  Google Scholar 

  21. T. Zhai, D. Muhanhali, X. Jia, Z. Wu, Z. Cai, Y. Ling, Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer. Endocrine 66(3), 573–584 (2019). https://doi.org/10.1007/s12020-019-02021-9

    Article  CAS  PubMed  Google Scholar 

  22. N. Li, X. Zhan, Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 10(3), 273–290 (2019). https://doi.org/10.1007/s13167-019-00175-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4), 610–617 (1993). https://doi.org/10.1227/00006123-199310000-00008

    Article  CAS  PubMed  Google Scholar 

  25. O. Mete, S. Ezzat, S.L. Asa, Biomarkers of aggressive pituitary adenomas. J. Mol. Endocrinol. 49(2), R69–R78 (2012). https://doi.org/10.1530/JME-12-0113

    Article  CAS  PubMed  Google Scholar 

  26. F. Conte, G. Fiscon, V. Licursi, D. Bizzarri, T. D’Anto, L. Farina, P. Paci, A paradigm shift in medicine: a comprehensive review of network-based approaches. Biochim. Biophys. Acta Gene Regul. Mech., 194416 (2019). https://doi.org/10.1016/j.bbagrm.2019.194416

  27. A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. Aydin, K.Y. Arga, Co-expression network analysis elucidated a core module in association with prognosis of non-functioning non-invasive human pituitary adenoma. Front. Endocrinol. 10, 361 (2019). https://doi.org/10.3389/fendo.2019.00361

    Article  Google Scholar 

  29. W. Xing, Z. Qi, C. Huang, N. Zhang, W. Zhang, Y. Li, M. Qiu, Q. Fang, G. Hui, Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol. Open 8(1), (2019). https://doi.org/10.1242/bio.037127

  30. H. Joshi, B. Vastrad, C. Vastrad, Identification of important invasion-related genes in non-functional pituitary adenomas. J. Mol. Neurosci. 68(4), 565–589 (2019). https://doi.org/10.1007/s12031-019-01318-8

    Article  CAS  PubMed  Google Scholar 

  31. S.J. Thomas, J.A. Snowden, M.P. Zeidler, S.J. Danson, The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer 113(3), 365–371 (2015). https://doi.org/10.1038/bjc.2015.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.J. O’Shea, D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, A. Laurence, The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015). https://doi.org/10.1146/annurev-med-051113-024537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Y. Asari, K. Kageyama, Y. Nakada, M. Tasso, S. Takayasu, K. Niioka, N. Ishigame, M. Daimon, Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells. Onco Targets Ther. 10, 4329–4338 (2017). https://doi.org/10.2147/OTT.S141345

    Article  PubMed  PubMed Central  Google Scholar 

  34. R. van der Pas, J.H. van Esch, C. de Bruin, A.H. Danser, A.M. Pereira, P.M. Zelissen, R. Netea-Maier, D.M. Sprij-Mooij, I.M. van den Berg-Garrelds, R.H. van Schaik, S.W. Lamberts, A.H. van den Meiracker, L.J. Hofland, R.A. Feelders, Cushing’s disease and hypertension: in vivo and in vitro study of the role of the renin-angiotensin-aldosterone system and effects of medical therapy. Eur. J. Endocrinol. 170(2), 181–191 (2014). https://doi.org/10.1530/EJE-13-0477

    Article  CAS  PubMed  Google Scholar 

  35. L. Faggi, A. Giustina, G. Tulipano, Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol. Cell Endocrinol. 470, 60–74 (2018). https://doi.org/10.1016/j.mce.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  36. A.B. Grossman, The molecular biology of pituitary tumors: a personal perspective. Pituitary 12(3), 265–270 (2009). https://doi.org/10.1007/s11102-008-0158-7

    Article  CAS  PubMed  Google Scholar 

  37. Y. Jin Kim, C. Hyun Kim, J. Hwan Cheong, J. Min Kim, Relationship between expression of vascular endothelial growth factor and intratumoral hemorrhage in human pituitary adenomas. Tumori 97(5), 639–646 (2011). https://doi.org/10.1700/989.10725

    Article  PubMed  Google Scholar 

  38. R. Sanchez-Ortiga, L. Sanchez-Tejada, O. Moreno-Perez, P. Riesgo, M. Niveiro, A.M. Pico Alfonso, Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 16(3), 370–377 (2013). https://doi.org/10.1007/s11102-012-0434-4

    Article  CAS  PubMed  Google Scholar 

  39. C. Zhao, M. Zhang, W. Liu, C. Wang, Q. Zhang, W. Li, Beta-catenin knockdown inhibits pituitary adenoma cell proliferation and invasion via interfering with AKT and gelatinases expression. Int. J. Oncol. 46(4), 1643–1650 (2015). https://doi.org/10.3892/ijo.2015.2862

    Article  CAS  PubMed  Google Scholar 

  40. X. Zhan, D.M. Desiderio, Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med. Genomics 3, 13 (2010). https://doi.org/10.1186/1755-8794-3-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Onofri, M. Theodoropoulou, M. Losa, E. Uhl, M. Lange, E. Arzt, G.K. Stalla, U. Renner, Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J. Endocrinol. 191(1), 249–261 (2006). https://doi.org/10.1677/joe.1.06992

    Article  CAS  PubMed  Google Scholar 

  42. Y. Li, T. Li, Y. Jin, J. Shen, Dgat2 reduces hepatocellular carcinoma malignancy via downregulation of cell cycle-related gene expression. Biomed. Pharmacother. 115, 108950 (2019). https://doi.org/10.1016/j.biopha.2019.108950

    Article  CAS  PubMed  Google Scholar 

  43. R. Nurminen, T. Rantapero, S.C. Wong, D. Fischer, R. Lehtonen, T.L. Tammela, M. Nykter, T. Visakorpi, T. Wahlfors, J. Schleutker, Expressional profiling of prostate cancer risk SNPs at 11q13.5 identifies DGAT2 as a new target gene. Genes Chromosomes Cancer 55(8), 661–673 (2016). https://doi.org/10.1002/gcc.22368

    Article  CAS  PubMed  Google Scholar 

  44. Y. Han, Z. Wang, S. Sun, Z. Zhang, J. Liu, X. Jin, P. Wu, T. Ji, W. Ding, B. Wang, Q. Gao, Decreased DHRS2 expression is associated with HDACi resistance and poor prognosis in ovarian cancer. Epigenetics 15(1–2), 122–133 (2020). https://doi.org/10.1080/15592294.2019.1656155

    Article  PubMed  Google Scholar 

  45. Y. Zhou, L. Wang, X. Ban, T. Zeng, Y. Zhu, M. Li, X.Y. Guan, Y. Li, DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 37(8), 1086–1094 (2018). https://doi.org/10.1038/onc.2017.383

    Article  CAS  PubMed  Google Scholar 

  46. B.W. Taron, P.A. Colussi, J.M. Wiedman, P. Orlean, C.H. Taron, Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279(34), 36083–36092 (2004). https://doi.org/10.1074/jbc.M405081200

    Article  CAS  PubMed  Google Scholar 

  47. S.L. Asa, Practical pituitary pathology: what does the pathologist need to know? Arch. Pathol. Lab. Med. 132(8), 1231–1240 (2008). https://doi.org/10.1043/1543-2165(2008)132[1231:PPPWDT]2.0.CO;2

    Article  PubMed  Google Scholar 

  48. O. Mete, S.L. Asa, Clinicopathological correlations in pituitary adenomas. Brain Pathol. 22(4), 443–453 (2012). https://doi.org/10.1111/j.1750-3639.2012.00599.x

    Article  PubMed  PubMed Central  Google Scholar 

  49. H. Nishioka, N. Inoshita, O. Mete, S.L. Asa, K. Hayashi, A. Takeshita, N. Fukuhara, M. Yamaguchi-Okada, Y. Takeuchi, S. Yamada, The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr. Pathol. 26(4), 349–355 (2015). https://doi.org/10.1007/s12022-015-9398-z

    Article  CAS  PubMed  Google Scholar 

  50. R.S. Viger, S.M. Guittot, M. Anttonen, D.B. Wilson, M. Heikinheimo, Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22(4), 781–798 (2008). https://doi.org/10.1210/me.2007-0513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Pihlajoki, A. Farkkila, T. Soini, M. Heikinheimo, D.B. Wilson, GATA factors in endocrine neoplasia. Mol. Cell Endocrinol. 421, 2–17 (2016). https://doi.org/10.1016/j.mce.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  52. J. He, J.J. Yu, Q. Xu, L. Wang, J.Z. Zheng, L.Z. Liu, B.H. Jiang, Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 11(2), 373–384 (2015). https://doi.org/10.1080/15548627.2015.1009781

    Article  PubMed  PubMed Central  Google Scholar 

  53. H.T. Liu, S. Liu, L. Liu, R.R. Ma, P. Gao, EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 78(20), 5877–5890 (2018). https://doi.org/10.1158/0008-5472.CAN-18-1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Li, A.H. Ameri, S. Wang, K.H. Jansson, O.M. Casey, Q. Yang, M.L. Beshiri, L. Fang, R.G. Lake, S. Agarwal, A.N. Alilin, W. Xu, J. Yin, K. Kelly, EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 38(35), 6241–6255 (2019). https://doi.org/10.1038/s41388-019-0873-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S.W. Sun, X.M. Fang, Y.F. Li, Q.B. Wang, Y.X. Li, Expression and clinical significance of EGR-1 and PTEN in the pituitary tumors of elderly patients. Oncol. Lett. 14(2), 2165–2169 (2017). https://doi.org/10.3892/ol.2017.6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. L. Xu, Y. Chen, M. Dutra-Clarke, A. Mayakonda, M. Hazawa, S.E. Savinoff, N. Doan, J.W. Said, W.H. Yong, A. Watkins, H. Yang, L.W. Ding, Y.Y. Jiang, J.W. Tyner, J. Ching, J.P. Kovalik, V. Madan, S.L. Chan, M. Muschen, J.J. Breunig, D.C. Lin, H.P. Koeffler, BCL6 promotes glioma and serves as a therapeutic target. Proc. Natl Acad. Sci. USA 114(15), 3981–3986 (2017). https://doi.org/10.1073/pnas.1609758114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the researchers and staff who supported The Gene Expression Omnibus database.

Funding

This work was funded by the General Program of National Natural Science Foundation of Jiangxi Province (grant number: 20192BAB205042) and the Health and Family Planning Commission of Jiangxi Province (grant number: 20195109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohui Lu or Dongwei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of The First Affiliated Hospital of Nanchang University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Fu, X., Zheng, Z. et al. Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma. Endocrine 68, 377–389 (2020). https://doi.org/10.1007/s12020-020-02316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02316-2

Keywords

Navigation