Skip to main content

Advertisement

Log in

Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Epigenetics is the study of heritable, reversible gene expression patterns that do not originate from alterations in the DNA sequence. Epigenetic modifications influence gene expression patterns and include DNA methylation, histone modifications, and gene regulation via non-coding RNAs. While the study of epigenetics has been most broadly applied to neoplastic diseases, the role of the epigenome in a wide range of disease processes including autoimmune, allergic, and inflammatory processes is increasingly being recognized. Recent advances in the study of the epigenome have led to novel insights into the pathogenesis and potential therapeutic targets of various pathologic entities including inflammatory diseases. In this review, we examine the nature of epigenetic modifications in several well-studied autoimmune, allergic, and/or inflammatory disorders of the skin including systemic lupus erythematosus, vitiligo, systemic sclerosis, alopecia areata, pemphigus, psoriasis, atopic dermatitis, keloidal scarring, and hidradenitis suppurativa with the aim to determine how such epigenetic changes may be targeted for therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirst M, Marra MA (2009) Epigenetics and human disease. Int J Biochem Cell Biol 41(1):136–146. https://doi.org/10.1016/j.biocel.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  2. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80. https://doi.org/10.4161/epi.1.2.2762

    Article  PubMed  Google Scholar 

  3. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. https://doi.org/10.1038/nature05919

    Article  CAS  PubMed  Google Scholar 

  4. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  5. Arozarena I, Wellbrock C (2019) Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 19(7):377–391. https://doi.org/10.1038/s41568-019-0154-4

    Article  CAS  PubMed  Google Scholar 

  6. Kim E, Zucconi BE, Wu M et al (2019) MITF expression predicts therapeutic vulnerability to p300 inhibition in human melanoma. Cancer Res 79(10):2649–2661. https://doi.org/10.1158/0008-5472.can-18-2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu Y, Schleich K, Yue B et al (2018) Targeting the senescence-overriding cooperative activity of structurally unrelated H3K9 demethylases in melanoma. Cancer Cell 33(2):322–336.e8. https://doi.org/10.1016/j.ccell.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceol CJ, Houvras Y, Jane-Valbuena J et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517. https://doi.org/10.1038/nature09806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shanmugam MK, Sethi G (2013) Role of epigenetics in inflammation-associated diseases. Subcell Biochem 61:627–657. https://doi.org/10.1007/978-94-007-4525-4_27

    Article  CAS  PubMed  Google Scholar 

  10. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33(1):3–11. https://doi.org/10.1016/j.jaut.2009.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. https://doi.org/10.1038/nrg1655

    Article  CAS  PubMed  Google Scholar 

  12. Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229. https://doi.org/10.1126/science.1153252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. https://doi.org/10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  14. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. https://doi.org/10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  16. Shi X, Sun M, Liu H et al (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166. https://doi.org/10.1016/j.canlet.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  17. Yu C-Y, Kuo H-C (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26(1):29. https://doi.org/10.1186/s12929-019-0523-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou Y, Kong Y, Fan W et al (2020) Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 131:110731. https://doi.org/10.1016/j.biopha.2020.110731

    Article  CAS  PubMed  Google Scholar 

  19. Mansuri MS, Singh M, Dwivedi M et al (2014) MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo. Br J Dermatol 171(5):1263–1267. https://doi.org/10.1111/bjd.13109

    Article  CAS  PubMed  Google Scholar 

  20. Wang M, Chen H, Qiu J et al (2020) Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 109:102440. https://doi.org/10.1016/j.jaut.2020.102440

    Article  CAS  PubMed  Google Scholar 

  21. Malaab M, Renaud L, Takamura N et al (2022) Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 81(2):268–277. https://doi.org/10.1136/annrheumdis-2021-221050

    Article  CAS  PubMed  Google Scholar 

  22. Shi YL, Weiland M, Li J et al (2013) MicroRNA expression profiling identifies potential serum biomarkers for non-segmental vitiligo. Pigment Cell Melanoma Res 26(3):418–421. https://doi.org/10.1111/pcmr.12086

    Article  CAS  PubMed  Google Scholar 

  23. Yao Q, Xing Y, Wang Z et al (2020) MiR-16–5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 13(2):2640–2654. https://doi.org/10.18632/aging.202308

    Article  Google Scholar 

  24. Masalha M, Sidi Y, Avni D (2018) The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. Exp Dermatol 27(6):603–610. https://doi.org/10.1111/exd.13520

    Article  PubMed  Google Scholar 

  25. Kaga H, Komatsuda A, Omokawa A et al (2015) Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE. Mod Rheumatol 25(6):865–70. https://doi.org/10.3109/14397595.2015.1030102

    Article  CAS  PubMed  Google Scholar 

  26. Aguennouz MH, Guarneri F, Oteri R et al (2021) Serum levels of miRNA-21–5p in vitiligo patients and effects of miRNA-21–5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes. J Dermatol Sci 101(1):22–29. https://doi.org/10.1016/j.jdermsci.2020.10.014

    Article  CAS  PubMed  Google Scholar 

  27. Suo QF, Sheng J, Qiang FY et al (2018) Association of long non-coding RNA GAS5 and miR-21 levels in CD4(+) T cells with clinical features of systemic lupus erythematosus. Exp Ther Med 15(1):345–350. https://doi.org/10.3892/etm.2017.5429

    Article  CAS  PubMed  Google Scholar 

  28. Meisgen F, Xu N, Wei T et al (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21(4):312–314. https://doi.org/10.1111/j.1600-0625.2012.01462.x

    Article  CAS  PubMed  Google Scholar 

  29. Zhu H, Luo H, Li Y et al (2013) MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol 33(6):1100–1109. https://doi.org/10.1007/s10875-013-9896-z

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Wang X, Yang D et al (2014) MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg 134(4):561e–e573. https://doi.org/10.1097/PRS.0000000000000577

    Article  CAS  PubMed  Google Scholar 

  31. Sonkoly E, Wei T, Janson PC et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2(7):e610. https://doi.org/10.1371/journal.pone.0000610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hessam S, Sand M, Skrygan M et al (2017) Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the inflammatory pathway of hidradenitis suppurativa. Inflammation 40(2):464–472. https://doi.org/10.1007/s10753-016-0492-2

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Bai Y, Liu H et al (2013) Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim Biophys Sin (Shanghai) 45(8):692–699. https://doi.org/10.1093/abbs/gmt057

    Article  CAS  Google Scholar 

  34. Ciechomska M, Wojtas B, Swacha M et al (2020) Global miRNA and mRNA expression profiles identify miRNA-26a-2–3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 50(7):1057–1066. https://doi.org/10.1002/eji.201948428

    Article  CAS  PubMed  Google Scholar 

  35. Henderson J, Wilkinson S, Przyborski S et al (2021) microRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics 16(7):808–817. https://doi.org/10.1080/15592294.2020.1827715

    Article  PubMed  Google Scholar 

  36. Maurer B, Stanczyk J, Jungel A et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62(6):1733–1743. https://doi.org/10.1002/art.27443

    Article  CAS  PubMed  Google Scholar 

  37. Tafazzoli A, Forstner AJ, Broadley D et al (2018) Genome-wide microRNA analysis implicates miR-30b/d in the etiology of Alopecia areata. J Invest Dermatol 138(3):549–556. https://doi.org/10.1016/j.jid.2017.09.046

    Article  CAS  PubMed  Google Scholar 

  38. Huang RY, Li L, Wang MJ et al (2015) An exploration of the role of microRNAs in psoriasis: a systematic review of the literature. Medicine (Baltimore) 94(45):e2030. https://doi.org/10.1097/MD.0000000000002030

    Article  CAS  Google Scholar 

  39. Henderson J, Pryzborski S, Stratton R et al (2021) Wnt antagonist DKK-1 levels in systemic sclerosis are lower in skin but not in blood and are regulated by microRNA33a-3p. Exp Dermatol 30(1):162–168. https://doi.org/10.1111/exd.14136

    Article  CAS  PubMed  Google Scholar 

  40. Wasson CW, Abignano G, Hermes H et al (2020) Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann Rheum Dis 79(4):507–517. https://doi.org/10.1136/annrheumdis-2019-216542

    Article  CAS  PubMed  Google Scholar 

  41. Xu N, Brodin P, Wei T et al (2011) MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 131(7):1521–1529. https://doi.org/10.1038/jid.2011.55

    Article  CAS  PubMed  Google Scholar 

  42. Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089. https://doi.org/10.4049/jimmunol.179.8.5082

    Article  CAS  PubMed  Google Scholar 

  43. Sheng Y, Qi S, Hu R et al (2019) Identification of blood microRNA alterations in patients with severe active alopecia areata. J Cell Biochem 120(9):14421–14430. https://doi.org/10.1002/jcb.28700

    Article  CAS  PubMed  Google Scholar 

  44. Chouri E, Wang M, Hillen MR et al (2021) Implication of miR-126 and miR-139–5p in plasmacytoid dendritic cell dysregulation in systemic sclerosis. J Clin Med 10(3):491. https://doi.org/10.3390/jcm10030491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng S, Wang L, Liu W et al (2018) MiR-126 correlates with increased disease severity and promotes keratinocytes proliferation and inflammation while suppresses cells’ apoptosis in psoriasis. J Clin Lab Anal 32(9):e22588. https://doi.org/10.1002/jcla.22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao S, Wang Y, Liang Y et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63(5):1376–1386. https://doi.org/10.1002/art.30196

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Liang J, Qin H et al (2016) Elevated expression of miR-142-3p is related to the pro-inflammatory function of monocyte-derived dendritic cells in SLE. Arthritis Res Ther 18(1):263. https://doi.org/10.1186/s13075-016-1158-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Løvendorf MB, Zibert JR, Gyldenløve M et al (2014) MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci 75(2):133–139. https://doi.org/10.1016/j.jdermsci.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  49. Xia P, Fang X, Zhang ZH et al (2012) Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol Lett 148(2):151–162. https://doi.org/10.1016/j.imlet.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  50. Tang Y, Luo X, Cui H et al (2009) MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheumatism 60(4):1065–1075. https://doi.org/10.1002/art.24436

    Article  CAS  PubMed  Google Scholar 

  51. Yan Q, Chen J, Li W et al (2016) Targeting miR-155 to treat experimental scleroderma. Sci Rep 6:20314. https://doi.org/10.1038/srep20314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sonkoly E, Janson P, Majuri ML et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126(3):581–9.e1-20

    Article  CAS  PubMed  Google Scholar 

  53. Iwamoto N, Vettori S, Maurer B et al (2016) Downregulation of miR-193b in systemic sclerosis regulates the proliferative vasculopathy by urokinase-type plasminogen activator expression. Ann Rheum Dis 75(1):303–310. https://doi.org/10.1136/annrheumdis-2014-205326

    Article  CAS  PubMed  Google Scholar 

  54. Zhao M, Wang LT, Liang GP et al (2014) Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol 150(1):22–30. https://doi.org/10.1016/j.clim.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  55. Kashiyama K, Mitsutake N, Matsuse M et al (2012) miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol 132(6):1597–1604. https://doi.org/10.1038/jid.2012.22

    Article  CAS  PubMed  Google Scholar 

  56. Wu ZY, Lu L, Liang J et al (2014) Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts. Genet Mol Res 13(2):2727–2738. https://doi.org/10.4238/2014.April.14.2

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Wang K, Liang J et al (2015) Differential expression analysis of miRNA in peripheral blood mononuclear cells of patients with non-segmental vitiligo. J Dermatol 42(2):193–197. https://doi.org/10.1111/1346-8138.12725

    Article  CAS  PubMed  Google Scholar 

  58. Sun XG, Tao JH, Xiang N et al (2016) Negative correlation between miR-326 and Ets-1 in regulatory T cells from new-onset SLE patients. Inflammation 39(2):822–829. https://doi.org/10.1007/s10753-016-0312-8

    Article  CAS  PubMed  Google Scholar 

  59. Liu Q, Cui F, Wang M et al (2018) Increased expression of microRNA-338-3p contributes to production of Dsg3 antibody in pemphigus vulgaris patients. Mol Med Rep 18(1):550–556. https://doi.org/10.3892/mmr.2018.8934

    Article  CAS  PubMed  Google Scholar 

  60. Wang M, Liang L, Li L et al (2017) Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 15(6):3479–3484. https://doi.org/10.3892/mmr.2017.6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang M, Sun Z, Dang E et al (2017) TGFbeta/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J Invest Dermatol 137(10):2177–2186. https://doi.org/10.1016/j.jid.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  62. Rossato M, Affandi AJ, Thordardottir S et al (2017) Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol 69(9):1891–1902. https://doi.org/10.1002/art.40163

    Article  CAS  PubMed  Google Scholar 

  63. Ueta M, Nishigaki H, Komai S et al (2021) Difference in the plasma level of miR-628–3p in atopic dermatitis patients with/without atopic keratoconjunctivitis. Immun Inflamm Dis 9(4):1815–1819. https://doi.org/10.1002/iid3.536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seifeldin NS, El Sayed SB, Asaad MK (2016) Increased microRNA-1266 levels as a biomarker for disease activity in psoriasis vulgaris. Int J Dermatol 55(11):1242–1247. https://doi.org/10.1111/ijd.13102

    Article  CAS  PubMed  Google Scholar 

  65. Liu P, Hu Y, Xia L et al (2020) miR-4417 suppresses keloid fibrosis growth by inhibiting CyclinD1. J Biosci 45:47. https://doi.org/10.1007/s12038-020-0018-9

    PubMed  Google Scholar 

  66. Feinberg AP, Fallin MD (2015) Epigenetics at the crossroads of genes and the environment. JAMA 314(11):1129–1130. https://doi.org/10.1001/jama.2015.10414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu H, Zhao M, Chang C et al (2015) The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 16(5):11013–11033. https://doi.org/10.3390/ijms160511013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Javierre BM, Fernandez AF, Richter J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20(2):170–179. https://doi.org/10.1101/gr.100289.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marion MC, Ramos PS, Bachali P et al (2021) Nucleic acid-sensing and interferon-inducible pathways show differential methylation in MZ twins discordant for lupus and overexpression in independent lupus samples: implications for pathogenic mechanism and drug targeting. Genes 12(12):1898. https://doi.org/10.3390/genes12121898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Teruel M, Sawalha AH (2017) Epigenetic variability in systemic lupus erythematosus: what we learned from genome-wide DNA methylation studies. Curr Rheumatol Rep 19(6):32. https://doi.org/10.1007/s11926-017-0657-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fang H, Disteche CM, Berletch JB (2019) X inactivation and escape: epigenetic and structural features. Front Cell Dev Biol 7:219. https://doi.org/10.3389/fcell.2019.00219

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pyfrom S, Paneru B, Knox James J et al (2021) The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc Natl Acad Sci 118(24):e2024624118. https://doi.org/10.1073/pnas.2024624118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leung YT, Maurer K, Song L et al (2020) Prolactin activates IRF1 and leads to altered balance of histone acetylation: implications for systemic lupus erythematosus. Mod Rheumatol 30(3):532–543. https://doi.org/10.1080/14397595.2019.1620999

    Article  CAS  PubMed  Google Scholar 

  74. Richardson B, Scheinbart L, Strahler J et al (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673. https://doi.org/10.1002/art.1780331109

    Article  CAS  PubMed  Google Scholar 

  75. Jeffries MA, Dozmorov M, Tang Y et al (2011) Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 6(5):593–601. https://doi.org/10.4161/epi.6.5.15374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lei W, Luo Y, Lei W et al (2009) Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38(5):369–374. https://doi.org/10.1080/03009740902758875

    Article  CAS  PubMed  Google Scholar 

  77. Absher DM, Li X, Waite LL et al (2013) Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet 9(8):e1003678. https://doi.org/10.1371/journal.pgen.1003678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coit P, Yalavarthi S, Ognenovski M et al (2015) Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun 58:59–66. https://doi.org/10.1016/j.jaut.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crow MK (2014) Type I interferon in the pathogenesis of lupus. J Immunol 192(12):5459–5468. https://doi.org/10.4049/jimmunol.1002795

    Article  CAS  PubMed  Google Scholar 

  80. Zhang B, Zhou T, Wu H et al (2021) Difference of IFI44L methylation and serum IFN-a1 level among patients with discoid and systemic lupus erythematosus and healthy individuals. J Transl Autoimmun 4:100092. https://doi.org/10.1016/j.jtauto.2021.100092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gautam P, Sharma A, Bhatnagar A (2021) Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B cells from systemic lupus erythematosus patients. Immunol Lett 240:41–45. https://doi.org/10.1016/j.imlet.2021.09.007

    Article  CAS  PubMed  Google Scholar 

  82. Yang M, Long D, Hu L et al (2021) AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1–Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther 6(1):341. https://doi.org/10.1038/s41392-021-00725-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Breitbach ME, Ramaker RC, Roberts K et al (2020) Population-specific patterns of epigenetic defects in the B cell lineage in patients with systemic lupus erythematosus. Arthritis Rheumatol 72(2):282–291. https://doi.org/10.1002/art.41083

    Article  CAS  PubMed  Google Scholar 

  84. Vordenbäumen S, Rosenbaum A, Gebhard C et al (2021) Associations of site-specific CD4(+)-T-cell hypomethylation within CD40-ligand promotor and enhancer regions with disease activity of women with systemic lupus erythematosus. Lupus 30(1):45–51. https://doi.org/10.1177/0961203320965690

    Article  CAS  PubMed  Google Scholar 

  85. Lu Q, Wu A, Tesmer L et al (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358. https://doi.org/10.4049/jimmunol.179.9.6352

    Article  CAS  PubMed  Google Scholar 

  86. Lu Q, Wu A, Ray D et al (2003) DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 170(10):5124–5132. https://doi.org/10.4049/jimmunol.170.10.5124

    Article  CAS  PubMed  Google Scholar 

  87. Hanaei S, Sanati G, Zoghi S et al (2020) The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergol Immunopathol (Madr) 48(4):332–338. https://doi.org/10.1016/j.aller.2020.03.014

    Article  CAS  Google Scholar 

  88. Zhang Q, Liang Y, Yuan H et al (2019) Integrated analysis of lncRNA, miRNA and mRNA expression profiling in patients with systemic lupus erythematosus. Arch Med Sci 15(4):872–879. https://doi.org/10.5114/aoms.2018.79145

    Article  CAS  PubMed  Google Scholar 

  89. Sheedy FJ, Palsson-McDermott E, Hennessy EJ et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147. https://doi.org/10.1038/ni.1828

    Article  CAS  PubMed  Google Scholar 

  90. Cheng Y, Ji R, Yue J et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840. https://doi.org/10.2353/ajpath.2007.061170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu Y, Yang D, Xiao Z et al (2012) miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg 36(1):193–201. https://doi.org/10.1007/s00266-011-9773-1

    Article  PubMed  Google Scholar 

  92. Lee J, Jang A, Seo SJ et al (2020) Epigenetic regulation of filaggrin gene expression in human epidermal keratinocytes. Ann Dermatol 32(2):122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803. https://doi.org/10.1038/sj.onc.1210083

    Article  CAS  PubMed  Google Scholar 

  94. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033. https://doi.org/10.1158/0008-5472.CAN-05-0137

    Article  CAS  PubMed  Google Scholar 

  95. Gao X, Song Y, Du P et al (2022) Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol 106:108578. https://doi.org/10.1016/j.intimp.2022.108578

    Article  CAS  PubMed  Google Scholar 

  96. Hou G, Harley ITW, Lu X et al (2021) SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 12(1):135. https://doi.org/10.1038/s41467-020-20460-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fouda ME, Nour El Din DM, Mahgoub MY et al (2020) Genetic variants of microRNA-146a gene: an indicator of systemic lupus erythematosus susceptibility, lupus nephritis, and disease activity. Mol Biol Rep 47(10):7459–7466. https://doi.org/10.1007/s11033-020-05802-y

    Article  CAS  PubMed  Google Scholar 

  98. Xie S, Zeng Q, Ouyang S et al (2021) Bioinformatics analysis of epigenetic and SNP-related molecular markers in systemic lupus erythematosus. Am J Transl Res 13(6):6312–6329

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16(5):513–521. https://doi.org/10.1097/01.bor.0000132648.62680.81

    Article  CAS  PubMed  Google Scholar 

  100. Johanneson B, Lima G, von Salome J et al (2002) A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 71(5):1060–1071. https://doi.org/10.1086/344289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Haywood ME, Rose SJ, Horswell S et al (2006) Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun 7(3):250–263. https://doi.org/10.1038/sj.gene.6364294

    Article  CAS  PubMed  Google Scholar 

  102. Wu GC, Pan HF, Leng RX et al (2015) Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14(9):798–805. https://doi.org/10.1016/j.autrev.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  103. Li J, Wu GC, Zhang TP et al (2017) Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Sci Rep 7(1):15119. https://doi.org/10.1038/s41598-017-15156-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu Y, Zhang F, Ma J et al (2015) Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res Ther 17:131. https://doi.org/10.1186/s13075-015-0632-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo G, Chen A, Ye L et al (2020) TCONS_00483150 as a novel diagnostic biomarker of systemic lupus erythematosus. Epigenomics 12(11):973–988. https://doi.org/10.2217/epi-2019-0265

    Article  CAS  PubMed  Google Scholar 

  106. Wang Z, Zhao M, Yin J et al (2020) E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Investig 130(7):3717–3733. https://doi.org/10.1172/JCI129018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu L, Hu L, Yang L et al (2021) UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 13(1):31. https://doi.org/10.1186/s13148-021-01007-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu L, Jiang X, Qi C et al (2021) EZH2 inhibition interferes with the activation of type I interferon signaling pathway and ameliorates lupus nephritis in NZB/NZW F1 mice. Front Immunol 12:653989. https://doi.org/10.3389/fimmu.2021.653989

    PubMed  PubMed Central  Google Scholar 

  109. Zhen Y, Smith RD, Finkelman FD et al (2020) Ezh2-mediated epigenetic modification is required for allogeneic T cell-induced lupus disease. Arthritis Res Ther 22(1):133. https://doi.org/10.1186/s13075-020-02225-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35(5):804–810

    CAS  PubMed  Google Scholar 

  111. Garcia BA, Busby SA, Shabanowitz J et al (2005) Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J Proteome Res 4(6):2032–2042. https://doi.org/10.1021/pr050188r

    Article  CAS  PubMed  Google Scholar 

  112. Mishra N, Reilly CM, Brown DR et al (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111(4):539–552. https://doi.org/10.1172/JCI16153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Spritz RA (2007) The genetics of generalized vitiligo and associated autoimmune diseases. Pigment Cell Res 20(4):271–278. https://doi.org/10.1111/j.1600-0749.2007.00384.x

    Article  CAS  PubMed  Google Scholar 

  114. Sreekumar GP, Erf GF, Smyth JR Jr (1996) 5-azacytidine treatment induces autoimmune vitiligo in parental control strains of the Smyth line chicken model for autoimmune vitiligo. Clin Immunol Immunopathol 81(2):136–144. https://doi.org/10.1006/clin.1996.0169

    Article  CAS  PubMed  Google Scholar 

  115. Zailaie MZ (2005) Decreased proinflammatory cytokine production by peripheral blood mononuclear cells from vitiligo patients following aspirin treatment. Saudi Med J 26(5):799–805

    PubMed  Google Scholar 

  116. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ et al (2003) Immunopolarization of CD4+ and CD8+ T cells to type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest 83(5):683–695. https://doi.org/10.1097/01.lab.0000069521.42488.1b

    Article  CAS  PubMed  Google Scholar 

  117. Zhao M, Gao F, Wu X et al (2010) Abnormal DNA methylation in peripheral blood mononuclear cells from patients with vitiligo. Br J Dermatol 163(4):736–742. https://doi.org/10.1111/j.1365-2133.2010.09919.x

    Article  CAS  PubMed  Google Scholar 

  118. Pu Y, Chen X, Chen Y et al (2021) Transcriptome and differential methylation integration analysis identified important differential methylation annotation genes and functional epigenetic modules related to vitiligo. Front Immunol 12:587440. https://doi.org/10.3389/fimmu.2021.587440

    PubMed  PubMed Central  Google Scholar 

  119. Yan S, Shi J, Sun D et al (2020) Current insight into the roles of microRNA in vitiligo. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05336-3

    Article  PubMed  Google Scholar 

  120. Shang Z, Li H (2017) Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients. J Dermatol 44(10):1138–1144. https://doi.org/10.1111/1346-8138.13886

    Article  CAS  PubMed  Google Scholar 

  121. Vaish U, Kumar AA, Varshney S et al (2019) Micro RNAs upregulated in Vitiligo skin play an important role in its aetiopathogenesis by altering TRP1 expression and keratinocyte-melanocytes cross-talk. Sci Rep 9(1):10079. https://doi.org/10.1038/s41598-019-46529-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mueller DW, Rehli M, Bosserhoff AK (2009) miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 129(7):1740–1751. https://doi.org/10.1038/jid.2008.452

    Article  CAS  PubMed  Google Scholar 

  123. Jiang S, Li C, Olive V et al (2011) Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118(20):5487–5497. https://doi.org/10.1182/blood-2011-05-355644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paraskevi A, Theodoropoulos G, Papaconstantinou I et al (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6(9):900–904. https://doi.org/10.1016/j.crohns.2012.02.006

    Article  PubMed  Google Scholar 

  125. Shi YL, Weiland M, Lim HW et al (2014) Serum miRNA expression profiles change in autoimmune vitiligo in mice. Exp Dermatol 23(2):140–142. https://doi.org/10.1111/exd.12319

    Article  CAS  PubMed  Google Scholar 

  126. Pauley KM, Satoh M, Chan AL et al (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10(4):R101. https://doi.org/10.1186/ar2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hermann H, Runnel T, Aab A et al (2017) miR-146b Probably Assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Invest Dermatol 137(9):1945–1954. https://doi.org/10.1016/j.jid.2017.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Harris JE, Harris TH, Weninger W et al (2012) A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol 132(7):1869–1876. https://doi.org/10.1038/jid.2011.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kordaß T, Weber CEM, Oswald M et al (2016) SOX5 is involved in balanced MITF regulation in human melanoma cells. BMC Med Genomics 9(1):10. https://doi.org/10.1186/s12920-016-0170-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Angiolilli C, Marut W, van der Kroef M et al (2018) New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol 14(11):657–673. https://doi.org/10.1038/s41584-018-0099-0

    Article  PubMed  Google Scholar 

  131. Yi X, Guo W, Shi Q et al (2019) SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo. Theranostics 9(6):1614–1633. https://doi.org/10.7150/thno.30398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Becatti M, Fiorillo C, Barygina V et al (2014) SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival. J Cell Mol Med 18(3):514–529. https://doi.org/10.1111/jcmm.12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Broen JC, Radstake TR, Rossato M (2014) The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol 10(11):671–681. https://doi.org/10.1038/nrrheum.2014.128

    Article  CAS  PubMed  Google Scholar 

  134. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48(7):1956–1963. https://doi.org/10.1002/art.11173

    Article  PubMed  Google Scholar 

  135. De Martinis M, Ciccarelli F, Sirufo MM et al (2016) An overview of environmental risk factors in systemic sclerosis. Expert Rev Clin Immunol 12(4):465–478. https://doi.org/10.1586/1744666X.2016.1125782

    Article  CAS  PubMed  Google Scholar 

  136. Chifflot H, Fautrel B, Sordet C et al (2008) Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin Arthritis Rheum 37(4):223–235. https://doi.org/10.1016/j.semarthrit.2007.05.003

    Article  PubMed  Google Scholar 

  137. Jiang H, Xiao R, Lian X et al (2012) Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 143(1):39–44. https://doi.org/10.1016/j.clim.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  138. Lian X, Xiao R, Hu X et al (2012) DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum 64(7):2338–2345. https://doi.org/10.1002/art.34376

    Article  CAS  PubMed  Google Scholar 

  139. Komura K, Fujimoto M, Yanaba K et al (2008) Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis 67(6):867–872. https://doi.org/10.1136/ard.2007.073387

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y, Shu Y, Xiao Y et al (2014) Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics 6(1):25. https://doi.org/10.1186/1868-7083-6-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li Z, Li D, Tsun A et al (2015) FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 12(5):558–565. https://doi.org/10.1038/cmi.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lal G, Zhang N, van der Touw W et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182(1):259–273. https://doi.org/10.4049/jimmunol.182.1.259

    Article  CAS  PubMed  Google Scholar 

  143. Wang YY, Wang Q, Sun XH et al (2014) DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 171(1):39–47. https://doi.org/10.1111/bjd.12913

    Article  CAS  PubMed  Google Scholar 

  144. Ding W, Pu W, Wang L et al (2018) Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4(+) and CD8(+) T cells. J Invest Dermatol 138(5):1069–1077. https://doi.org/10.1016/j.jid.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  145. Yin H, Wu H, Zhao M et al (2017) Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus. Oncotarget 8(30):48938–48947. https://doi.org/10.18632/oncotarget.16894

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ghosh AK, Bhattacharyya S, Lafyatis R et al (2013) p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-beta: epigenetic feed-forward amplification of fibrosis. J Invest Dermatol 133(5):1302–1310. https://doi.org/10.1038/jid.2012.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Altorok N, Tsou PS, Coit P et al (2015) Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis 74(8):1612–1620. https://doi.org/10.1136/annrheumdis-2014-205303

    Article  CAS  PubMed  Google Scholar 

  148. Hattori M, Yokoyama Y, Hattori T et al (2015) Global DNA hypomethylation and hypoxia-induced expression of the ten eleven translocation (TET) family, TET1, in scleroderma fibroblasts. Exp Dermatol 24(11):841–846. https://doi.org/10.1111/exd.12767

    Article  CAS  PubMed  Google Scholar 

  149. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54(7):2271–2279. https://doi.org/10.1002/art.21948

    Article  CAS  PubMed  Google Scholar 

  150. Dees C, Pötter S, Zhang Y et al (2020) TGF-β–induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Investig 130(5):2347–2363. https://doi.org/10.1172/JCI122462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Baker Frost D, da Silveira W, Hazard ES et al (2021) Differential DNA methylation landscape in skin fibroblasts from African Americans with systemic sclerosis. Genes 12(2):129. https://doi.org/10.3390/genes12020129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mayes MD, Lacey JV Jr, Beebe-Dimmer J et al (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48(8):2246–2255. https://doi.org/10.1002/art.11073

    Article  PubMed  Google Scholar 

  153. Laing TJ, Gillespie BW, Toth MB, Mayes MD, Gallavan RH Jr, Burns CJ, Johanns JR, Cooper BC, Keroack BJ, Wasko MC, Lacey JV Jr, Schottenfeld D (1997) Racial differences in scleroderma among women in Michigan. Arthritis Rheumatism 40(4):734–742. https://doi.org/10.1002/art.1780400421

  154. Henderson J, Brown M, Horsburgh S et al (2019) Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology 58(3):527–535. https://doi.org/10.1093/rheumatology/key327

    Article  CAS  PubMed  Google Scholar 

  155. He Y, Tsou PS, Khanna D et al (2018) Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis 77(8):1208–1218. https://doi.org/10.1136/annrheumdis-2018-213022

    Article  CAS  PubMed  Google Scholar 

  156. Jafarinejad-Farsangi S, Farazmand A, Gharibdoost F et al (2016) Inhibition of microRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int J Dermatol 55(11):1259–1267. https://doi.org/10.1111/ijd.13308

    Article  CAS  PubMed  Google Scholar 

  157. Zhu H, Li Y, Qu S et al (2012) MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol 32(3):514–522. https://doi.org/10.1007/s10875-011-9647-y

    Article  CAS  PubMed  Google Scholar 

  158. Peng WJ, Tao JH, Mei B et al (2012) MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin Ther Targets 16(9):875–9. https://doi.org/10.1517/14728222.2012.708339

    Article  CAS  PubMed  Google Scholar 

  159. Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M et al (2015) MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 48(6):369–78. https://doi.org/10.3109/08916934.2015.1030616

    Article  CAS  PubMed  Google Scholar 

  160. Wang Y, Sun J, Kahaleh B (2021) Epigenetic down-regulation of microRNA-126 in scleroderma endothelial cells is associated with impaired responses to VEGF and defective angiogenesis. J Cell Mol Med 25(14):7078–7088. https://doi.org/10.1111/jcmm.16727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Messemaker TC, Chadli L, Cai G et al (2018) Antisense long non-coding RNAs are deregulated in skin tissue of patients with systemic sclerosis. J Invest Dermatol 138(4):826–835. https://doi.org/10.1016/j.jid.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  162. Wang Z, Jinnin M, Nakamura K et al (2016) Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol 25(2):131–136. https://doi.org/10.1111/exd.12900

    Article  CAS  PubMed  Google Scholar 

  163. Wasson CW, Ross RL, Wells R et al (2020) Long non-coding RNA HOTAIR induces GLI2 expression through Notch signalling in systemic sclerosis dermal fibroblasts. Arthritis Res Ther 22(1):286. https://doi.org/10.1186/s13075-020-02376-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pachera E, Assassi S, Salazar GA et al (2020) Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis. J Clin Investig 130(9):4888–4905. https://doi.org/10.1172/jci135439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Abd-Elmawla MA, Hassan M, Elsabagh YA et al (2020) Deregulation of long noncoding RNAs ANCR, TINCR, HOTTIP and SPRY4-IT1 in plasma of systemic sclerosis patients: SPRY4-IT1 as a novel biomarker of scleroderma and its subtypes. Cytokine 133:155124. https://doi.org/10.1016/j.cyto.2020.155124

    Article  CAS  PubMed  Google Scholar 

  166. Mariotti B, Servaas NH, Rossato M et al (2019) The long non-coding RNA NRIR drives IFN-response in monocytes: implication for systemic sclerosis. Front Immunol 10:100. https://doi.org/10.3389/fimmu.2019.00100

    PubMed  PubMed Central  Google Scholar 

  167. Servaas NH, Mariotti B, van der Kroef M et al (2021) Characterization of long non-coding RNAs in systemic sclerosis monocytes: a potential role for PSMB8-AS1 in altered cytokine secretion. Int J Mol Sci 22(9):4365. https://doi.org/10.3390/ijms22094365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huber LC, Distler JH, Moritz F et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56(8):2755–2764. https://doi.org/10.1002/art.22759

    Article  CAS  PubMed  Google Scholar 

  169. Hemmatazad H, Rodrigues HM, Maurer B et al (2009) Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum 60(5):1519–1529. https://doi.org/10.1002/art.24494

    Article  PubMed  Google Scholar 

  170. Ghosh AK, Yuan W, Mori Y et al (2000) Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene 19(31):3546–3555. https://doi.org/10.1038/sj.onc.1203693

    Article  CAS  PubMed  Google Scholar 

  171. Shin JY, Beckett JD, Bagirzadeh R et al (2019) Epigenetic activation and memory at a TGFB2 enhancer in systemic sclerosis. Sci Transl Med 11(497):eaaw0790. https://doi.org/10.1126/scitranslmed.aaw0790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kramer M, Dees C, Huang J et al (2013) Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann Rheum Dis 72(4):614–620. https://doi.org/10.1136/annrheumdis-2012-201615

    Article  CAS  PubMed  Google Scholar 

  173. Wang Q, Xiao Y, Shi Y et al (2015) Overexpression of JMJD3 may contribute to demethylation of H3K27me3 in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 161(2):396–399. https://doi.org/10.1016/j.clim.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  174. Bergmann C, Brandt A, Merlevede B et al (2018) The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 77(1):150–158. https://doi.org/10.1136/annrheumdis-2017-211501

    Article  CAS  PubMed  Google Scholar 

  175. Chu H, Jiang S, Liu Q et al (2018) Sirtuin1 protects against systemic sclerosis-related pulmonary fibrosis by decreasing proinflammatory and profibrotic processes. Am J Respir Cell Mol Biol 58(1):28–39. https://doi.org/10.1165/rcmb.2016-0192OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zerr P, Palumbo-Zerr K, Huang J et al (2016) Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 75(1):226–233. https://doi.org/10.1136/annrheumdis-2014-205740

    Article  CAS  PubMed  Google Scholar 

  177. Wei J, Ghosh AK, Chu H et al (2015) The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheumatol 67(5):1323–1334. https://doi.org/10.1002/art.39061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wyman AE, Noor Z, Fishelevich R et al (2017) Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 312(6):L945–L958. https://doi.org/10.1152/ajplung.00473.2016

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sosulski ML, Gongora R, Feghali-Bostwick C et al (2017) Sirtuin 3 deregulation promotes pulmonary fibrosis. J Gerontol A Biol Sci Med Sci 72(5):595–602. https://doi.org/10.1093/gerona/glw151

    Article  CAS  PubMed  Google Scholar 

  180. Akamata K, Wei J, Bhattacharyya M et al (2016) SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7(43):69321–69336. https://doi.org/10.18632/oncotarget.12504

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhu X, Chu H, Jiang S et al (2017) Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway. J Dermatol Sci 87(2):149–158. https://doi.org/10.1016/j.jdermsci.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  182. Rehan M, Kurundkar D, Kurundkar AR et al (2021) Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. Nat Aging 1(2):205–217. https://doi.org/10.1038/s43587-021-00027-5

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tsou PS, Palisoc PJ, Ali M et al (2021) Genome-wide reduction in chromatin accessibility and unique transcription factor footprints in endothelial cells and fibroblasts in scleroderma skin. Arthritis Rheumatol 73(8):1501–1513. https://doi.org/10.1002/art.41694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wasserman D, Guzman-Sanchez DA, Scott K et al (2007) Alopecia areata. Int J Dermatol 46(2):121–131. https://doi.org/10.1111/j.1365-4632.2007.03193.x

    Article  CAS  PubMed  Google Scholar 

  185. Zhao M, Liang G, Wu X et al (2012) Abnormal epigenetic modifications in peripheral blood mononuclear cells from patients with alopecia areata. Br J Dermatol 166(2):226–273. https://doi.org/10.1111/j.1365-2133.2011.10646.x

    Article  CAS  PubMed  Google Scholar 

  186. Kuwano Y, Fujimoto M, Watanabe R et al (2007) Serum chemokine profiles in patients with alopecia areata. Br J Dermatol 157(3):466–473. https://doi.org/10.1111/j.1365-2133.2007.07943.x

    Article  CAS  PubMed  Google Scholar 

  187. Abdelkader HA, Amin I, Rashed LA et al (2022) Histone deacetylase 1 in patients with alopecia areata and acne vulgaris: an epigenetic alteration. Aust J Dermatol 63(2):e138-e141. https://doi.org/10.1111/ajd.13784

    Article  Google Scholar 

  188. Park M, Jang S, Chung JH et al (2021) Inhibition of class I HDACs preserves hair follicle inductivity in postnatal dermal cells. Sci Rep 11(1):24056. https://doi.org/10.1038/s41598-021-03508-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang EHC, DeStefano GM, Patel AV et al (2017) Identification of differentially expressed miRNAs in alopecia areata that target immune-regulatory pathways. Genes Immun 18(2):100–104. https://doi.org/10.1038/gene.2017.4

    Article  CAS  PubMed  Google Scholar 

  190. Didona D, Paolino G, Di Zenzo G et al (2022) Pemphigus vulgaris: present and future therapeutic strategies. Dermatol Pract Concept 12(1):e2022037. https://doi.org/10.5826/dpc.1201a37

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hammers CM, Stanley JR (2020) Recent advances in understanding pemphigus and bullous pemphigoid. J Invest Dermatol 140(4):733–741. https://doi.org/10.1016/j.jid.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  192. Zhao M, Huang W, Zhang Q et al (2012) Aberrant epigenetic modifications in peripheral blood mononuclear cells from patients with pemphigus vulgaris. Br J Dermatol 167(3):523–531. https://doi.org/10.1111/j.1365-2133.2012.11007.x

    Article  CAS  PubMed  Google Scholar 

  193. Spadoni MB, Bumiller-Bini V, Petzl-Erler ML et al (2020) First glimpse of epigenetic effects on Pemphigus foliaceus. J Invest Dermatol 140(2):488-491.e1. https://doi.org/10.1016/j.jid.2019.07.691

    Article  CAS  PubMed  Google Scholar 

  194. Lin N, Liu Q, Wang M et al (2018) Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. PeerJ 6:e5388. https://doi.org/10.7717/peerj.5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lobo-Alves SC, Augusto DG, Magalhaes WCS et al (2019) Long noncoding RNA polymorphisms influence susceptibility to endemic pemphigus foliaceus. Br J Dermatol 181(2):324–331. https://doi.org/10.1111/bjd.17640

    Article  CAS  PubMed  Google Scholar 

  196. Salviano-Silva A, Farias TDJ, Bumiller-Bini V et al (2021) Genetic variability of immune-related lncRNAs: polymorphisms in LINC-PINT and LY86-AS1 are associated with pemphigus foliaceus susceptibility. Exp Dermatol 30(6):831–840. https://doi.org/10.1111/exd.14275

    Article  CAS  PubMed  Google Scholar 

  197. Frezzolini A, Cianchini G, Ruffelli M et al (2004) Interleukin-16 expression and release in bullous pemphigoid. Clin Exp Immunol 137(3):595–600. https://doi.org/10.1111/j.1365-2249.2004.02570.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Liu Z, Dang E, Li B et al (2018) Dysfunction of CD19+CD24hiCD27+ B regulatory cells in patients with bullous pemphigoid. Sci Rep 8(1):703. https://doi.org/10.1038/s41598-018-19226-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Purzycka-Bohdan D, Szczerkowska-Dobosz A, Zablotna M et al (2016) Assessment of interleukin 16 serum levels and skin expression in psoriasis patients in correlation with clinical severity of the disease. PLoS One 11(10):e0165577. https://doi.org/10.1371/journal.pone.0165577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tsai Y-C, Tsai T-F (2017) Anti-interleukin and interleukin therapies for psoriasis: current evidence and clinical usefulness. Ther Adv Musculoskelet Dis 9(11):277–294. https://doi.org/10.1177/1759720X17735756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Xue H, Gao L, Wu Y et al (2009) The IL-16 gene polymorphisms and the risk of the systemic lupus erythematosus. Clin Chim Acta 403(1–2):223–225. https://doi.org/10.1016/j.cca.2009.03.016

    Article  CAS  PubMed  Google Scholar 

  202. Abu-Zahab Z, Gad NM, Sabry S et al (2017) CD81 and CD19 as marker of activity in systemic lupus erythematosus disease. Egypt J Immunol 24(2):141–149

    PubMed  Google Scholar 

  203. Lovinsky-Desir S, Miller RL (2012) Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep 12(3):211–220. https://doi.org/10.1007/s11882-012-0257-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Frischknecht L, Vecellio M, Selmi C (2019) The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther Adv Musculoskelet Dis 11:1759720X19886505. https://doi.org/10.1177/1759720X19886505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang P, Zhao M, Liang G et al (2013) Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 41:17–24. https://doi.org/10.1016/j.jaut.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  206. Zhang P, Su Y, Chen H et al (2010) Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 60(1):40–42. https://doi.org/10.1016/j.jdermsci.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  207. Roberson ED, Liu Y, Ryan C et al (2012) A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 132(3 Pt 1):583–592. https://doi.org/10.1038/jid.2011.348

    Article  CAS  PubMed  Google Scholar 

  208. Yooyongsatit S, Ruchusatsawat K, Noppakun N et al (2015) Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 60(7):349–355. https://doi.org/10.1038/jhg.2015.33

    Article  CAS  PubMed  Google Scholar 

  209. Zhou F, Wang W, Shen C et al (2016) Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol 136(4):779–787. https://doi.org/10.1016/j.jid.2015.12.029

    Article  CAS  PubMed  Google Scholar 

  210. Verma D, Ekman AK, Bivik Eding C et al (2018) Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J Invest Dermatol 138(5):1088–1093. https://doi.org/10.1016/j.jid.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  211. Gao M, Si X (2018) Rapamycin ameliorates psoriasis by regulating the expression and methylation levels of tropomyosin via ERK1/2 and mTOR pathways in vitro and in vivo. Exp Dermatol 27(10):1112–1119. https://doi.org/10.1111/exd.13745

    Article  CAS  PubMed  Google Scholar 

  212. Ormerod AD, Shah SAA, Copeland P et al (2005) Treatment of psoriasis with topical sirolimus: preclinical development and a randomized, double-blind trial. Br J Dermatol 152(4):758–764. https://doi.org/10.1111/j.1365-2133.2005.06438.x

    Article  CAS  PubMed  Google Scholar 

  213. Chandra A, Senapati S, Roy S et al (2018) Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 10(1):108. https://doi.org/10.1186/s13148-018-0541-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Han J, Park SG, Bae JB et al (2012) The characteristics of genome-wide DNA methylation in naive CD4+ T cells of patients with psoriasis or atopic dermatitis. Biochem Biophys Res Commun 422(1):157–163. https://doi.org/10.1016/j.bbrc.2012.04.128

    Article  CAS  PubMed  Google Scholar 

  215. Park GT, Han J, Park SG et al (2014) DNA methylation analysis of CD4+ T cells in patients with psoriasis. Arch Dermatol Res 306(3):259–268. https://doi.org/10.1007/s00403-013-1432-8

    Article  CAS  PubMed  Google Scholar 

  216. Gervin K, Vigeland MD, Mattingsdal M et al (2012) DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet 8(1):e1002454. https://doi.org/10.1371/journal.pgen.1002454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hawkes JE, Nguyen GH, Fujita M et al (2016) microRNAs in psoriasis. J Invest Dermatol 136(2):365–371. https://doi.org/10.1038/JID.2015.409

    Article  CAS  PubMed  Google Scholar 

  218. Liu Q, Wu DH, Han L et al (2017) Roles of microRNAs in psoriasis: immunological functions and potential biomarkers. Exp Dermatol 26(4):359–367. https://doi.org/10.1111/exd.13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang Z-Y, Yan B-X, Zhou Y et al (2021) miRNA profiling of extracellular vesicles reveals biomarkers for psoriasis. J Invest Dermatol 141(1):185–189.e4. https://doi.org/10.1016/j.jid.2020.04.021

    Article  CAS  PubMed  Google Scholar 

  220. Timis TL, Orasan RI (2018) Understanding psoriasis: role of miRNAs. Biomed Rep 9(5):367–374. https://doi.org/10.3892/br.2018.1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Blauvelt A, Chiricozzi A (2018) The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol 55(3):379–390. https://doi.org/10.1007/s12016-018-8702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. El-Komy M, Amin I, El-Hawary MS et al (2020) Upregulation of the miRNA-155, miRNA-210, and miRNA-20b in psoriasis patients and their relation to IL-17. Int J Immunopathol Pharmacol 34:2058738420933742. https://doi.org/10.1177/2058738420933742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wu R, Zeng J, Yuan J et al (2018) MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 128(6):2551–2568. https://doi.org/10.1172/JCI97426

    Article  PubMed  PubMed Central  Google Scholar 

  224. Gupta R, Ahn R, Lai K et al (2016) Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol 136(3):603–609. https://doi.org/10.1016/j.jid.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  225. Ahn R, Gupta R, Lai K et al (2016) Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics 17(1):841. https://doi.org/10.1186/s12864-016-3188-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Szegedi K, Sonkoly E, Nagy N et al (2010) The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA. PRINS Exp Dermatol 19(3):269–278. https://doi.org/10.1111/j.1600-0625.2010.01066.x

    Article  CAS  PubMed  Google Scholar 

  227. Qiao M, Li R, Zhao X et al (2018) Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp Cell Res 363(2):243–254. https://doi.org/10.1016/j.yexcr.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  228. Li H, Yao Q, Mariscal AG et al (2018) Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun 9(1):1420. https://doi.org/10.1038/s41467-018-03704-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang P, Su Y, Zhao M et al (2011) Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur J Dermatol 21(4):552–557. https://doi.org/10.1684/ejd.2011.1383

    Article  CAS  PubMed  Google Scholar 

  230. Blander G, Bhimavarapu A, Mammone T et al (2009) SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 129(1):41–49. https://doi.org/10.1038/jid.2008.179

    Article  CAS  PubMed  Google Scholar 

  231. DeGregori J, Leone G, Miron A et al (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A 94(14):7245–7250. https://doi.org/10.1073/pnas.94.14.7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tovar-Castillo LE, Cancino-Diaz JC, Garcia-Vazquez F et al (2007) Under-expression of VHL and over-expression of HDAC-1, HIF-1alpha, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int J Dermatol 46(3):239–246. https://doi.org/10.1111/j.1365-4632.2006.02962.x

    Article  CAS  PubMed  Google Scholar 

  233. Larsen FS, Holm NV, Henningsen K (1986) Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 15(3):487–94

    CAS  PubMed  Google Scholar 

  234. Rodriguez E, Baurecht H, Wahn AF et al (2014) An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol 134(7):1873–1883. https://doi.org/10.1038/jid.2014.87

    Article  CAS  PubMed  Google Scholar 

  235. Liang Y, Wang P, Zhao M et al (2012) Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy 67(3):424–430. https://doi.org/10.1111/j.1398-9995.2011.02760.x

    Article  CAS  PubMed  Google Scholar 

  236. Liang Y, Chang C, Lu Q (2016) The genetics and epigenetics of atopic dermatitis-filaggrin and other polymorphisms. Clin Rev Allergy Immunol 51(3):315–328. https://doi.org/10.1007/s12016-015-8508-5

    Article  CAS  PubMed  Google Scholar 

  237. Ziyab AH, Karmaus W, Holloway JW et al (2013) DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol 27(3):e420–e423. https://doi.org/10.1111/jdv.12000

    Article  CAS  PubMed  Google Scholar 

  238. Nakamura T, Sekigawa I, Ogasawara H et al (2006) Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 298(5):253–256. https://doi.org/10.1007/s00403-006-0682-0

    Article  CAS  PubMed  Google Scholar 

  239. Luo Y, Zhou B, Zhao M et al (2014) Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 39(1):48–53. https://doi.org/10.1111/ced.12206

    Article  CAS  PubMed  Google Scholar 

  240. Wang X, Bao K, Wu P et al (2018) Integrative analysis of lncRNAs, miRNAs, and mRNA-associated ceRNA network in an atopic dermatitis recurrence model. Int J Mol Sci 19(10):3263. https://doi.org/10.3390/ijms19103263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Alaskhar Alhamwe B, Khalaila R, Wolf J et al (2018) Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol 14:39. https://doi.org/10.1186/s13223-018-0259-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Nguyen CM, Liao W (2015) Genomic imprinting in psoriasis and atopic dermatitis: a review. J Dermatol Sci 80(2):89–93. https://doi.org/10.1016/j.jdermsci.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Millington GW (2006) Genomic imprinting and dermatological disease. Clin Exp Dermatol 31(5):681–688. https://doi.org/10.1111/j.1365-2230.2006.02233.x

    Article  CAS  PubMed  Google Scholar 

  244. Tsai CH, Ogawa R (2019) Keloid research: current status and future directions. Scars Burn Heal 5:2059513119868659. https://doi.org/10.1177/2059513119868659

    Article  PubMed  PubMed Central  Google Scholar 

  245. Yu X, Li Z, Chan MT et al (2015) microRNA deregulation in keloids: an opportunity for clinical intervention? Cell Prolif 48(6):626–630. https://doi.org/10.1111/cpr.12225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Alghamdi MA, Al-Eitan LN, Stevenson A et al (2020) Secreted factors from keloid keratinocytes modulate collagen deposition by fibroblasts from normal and fibrotic tissue: a pilot study. Biomedicines 8(7):200. https://doi.org/10.3390/biomedicines8070200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wu ZY, Lu L, Guo XR et al (2013) Identification of differently expressed microRNAs in keloid and pilot study on biological function of miR-199a-5p. Zhonghua Zheng Xing Wai Ke Za Zhi 29(4):279–284

    PubMed  Google Scholar 

  248. Yan L, Cao R, Liu Y et al (2016) MiR-21-5p links epithelial-mesenchymal transition phenotype with stem-like cell signatures via AKT signaling in keloid keratinocytes. Sci Rep 6(1):28281. https://doi.org/10.1038/srep28281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wu J, Fang L, Cen Y et al (2019) MiR-21 regulates keloid formation by downregulating Smad7 via the TGF-β/Smad signaling pathway. J Burn Care Res 40(6):809–817. https://doi.org/10.1093/jbcr/irz089

    Article  PubMed  Google Scholar 

  250. Liang X, Ma L, Long X et al (2015) LncRNA expression profiles and validation in keloid and normal skin tissue. Int J Oncol 47(5):1829–1838. https://doi.org/10.3892/ijo.2015.3177

    Article  CAS  PubMed  Google Scholar 

  251. Zhu HY, Bai WD, Li C et al (2016) Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-beta2 by targeting ZNF217 via miR-200c in keloid fibroblasts. Sci Rep 6:24728. https://doi.org/10.1038/srep24728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sun XJ, Wang Q, Guo B et al (2017) Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids. Oncotarget 8(21):34236–34244. https://doi.org/10.18632/oncotarget.15880

    Article  PubMed  PubMed Central  Google Scholar 

  253. Fitzgerald O’Connor EJ, Badshah II, Addae LY et al (2012) Histone deacetylase 2 is upregulated in normal and keloid scars. J Invest Dermatol 132(4):1293–1296. https://doi.org/10.1038/jid.2011.432

    Article  CAS  PubMed  Google Scholar 

  254. Diao JS, Xia WS, Yi CG et al (2011) Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res 303(8):573–580. https://doi.org/10.1007/s00403-011-1140-1

    Article  CAS  PubMed  Google Scholar 

  255. Jian X, Qu L, Wang Y et al (2019) Trichostatin A-induced miR30a5p regulates apoptosis and proliferation of keloid fibroblasts via targeting BCL2. Mol Med Rep 19(6):5251–5262. https://doi.org/10.3892/mmr.2019.10185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bhattacharyya S, Ghosh AK, Pannu J et al (2005) Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum 52(4):1248–1258. https://doi.org/10.1002/art.20996

    Article  CAS  PubMed  Google Scholar 

  257. Russell SB, Russell JD, Trupin KM et al (2010) Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol 130(10):2489–2496. https://doi.org/10.1038/jid.2010.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jones LR, Young W, Divine G et al (2015) Genome-wide scan for methylation profiles in keloids. Dis Markers 2015:943176. https://doi.org/10.1155/2015/943176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hessam S, Sand M, Lang K et al (2017) Altered global 5-hydroxymethylation status in hidradenitis suppurativa: support for an epigenetic background. Dermatology 233(2–3):129–135. https://doi.org/10.1159/000478043

    Article  CAS  PubMed  Google Scholar 

  260. Hessam S, Sand M, Skrygan M et al (2016) Inflammation induced changes in the expression levels of components of the microRNA maturation machinery Drosha, Dicer, Drosha co-factor DGRC8 and Exportin-5 in inflammatory lesions of hidradenitis suppurativa patients. J Dermatol Sci 82(3):166–174. https://doi.org/10.1016/j.jdermsci.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  261. Mihara K, Cao X-R, Yen A et al (1989) Cell-cycle dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246:1300–1303

    Article  CAS  PubMed  Google Scholar 

  262. Hessam S, Sand M, Skrygan M et al (2017) The microRNA effector RNA-induced silencing complex in hidradenitis suppurativa: a significant dysregulation within active inflammatory lesions. Arch Dermatol Res 309(7):557–565. https://doi.org/10.1007/s00403-017-1752-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

M.W. is supported by a Karin Grunebaum Cancer Foundation Research Award. R.A. is supported by a Melanoma Research Alliance Established Investigator Award (https://doi.org/10.48050/pc.gr.86344) and a Department of Defense Translational Research Award in Melanoma (W81XWH-21–1-0980); M.C. is supported by an MRA Dermatology Fellows Award (https://doi.org/10.48050/pc.gr.147045) and a Department of Defense Translational Research Award in Melanoma (W81XWH-21–1-0980).

Author information

Authors and Affiliations

Authors

Contributions

RA and MW contributed to the concepts of the review; FG, AH, NAG, NG, and MC performed the literature search and drafted the review; FG, AH, NG, NAG, MW, MC, and RA contributed to the editing phase of the review.

Corresponding authors

Correspondence to Marianne Collard or Rhoda M. Alani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson, F., Hanly, A., Grbic, N. et al. Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clinic Rev Allerg Immunol 63, 447–471 (2022). https://doi.org/10.1007/s12016-022-08956-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08956-8

Keywords

Navigation