Skip to main content

Advertisement

Log in

Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Biases in the distribution and phenotype of T, B, and antigen-presenting cell populations are strongly connected to mechanisms of disease development in mouse models of systemic lupus erythematosus (SLE). Here, we describe longitudinal changes in lymphoid and antigen-presenting cell subsets in bone marrow, blood and spleen from two lupus-prone strains (MRL/lpr and B6.Sle1.Sle2.Sle3 tri-congenic mice), and how they integrate in our present understanding of the pathogenesis of the disease. In particular, we focus on (autoreactive) T cell activation patterns in lupus-prone mice. Break of T cell tolerance to chromatin constituents (histone peptides) is key to the development of the disease and is related to T cell intrinsic defects, contributed by genetic susceptibility factors and by extrinsic amplificatory mechanisms, in particular over-stimulation by antigen-presenting cells. We also describe shifts in B cell sub-populations, going from skewed immature B cell populations as an indication of disturbed central and peripheral tolerance checkpoints, to enriched long-lived plasma cells, which are key to persistent autoantibody production in the disease. B cell activation mechanisms in SLE are both T cell-dependent (break of tolerance and production of specific autoantibodies) and -independent (polyclonal B cell activation, production of autoantibodies by long-lived plasma cells). By providing a comprehensive evaluation of B and T cell surface markers in two major mouse models of SLE and a description of their changes before and after disease onset, this review illustrates how the study of lymphoid cell phenotype delivers key information regarding pathogenic pathways and supplies tools to assess the beneficial effects of novel therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2(9):802–809. doi:10.1038/ni0901-802

    Article  CAS  PubMed  Google Scholar 

  2. Lauwerys BR, Wakeland EK (2005) Genetics of lupus nephritis. Lupus 14(1):2–12

    Article  CAS  PubMed  Google Scholar 

  3. Limaye N, Belobrajdic KA, Wandstrat AE, Bonhomme F, Edwards SV, Wakeland EK (2008) Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes Immun 9(1):61–68. doi:10.1038/sj.gene.6364446

    Article  CAS  PubMed  Google Scholar 

  4. Konsta OD, Le Dantec C, Charras A, Brooks WH, Arleevskaya MI, Bordron A, Renaudineau Y (2015) An in silico approach reveals associations between genetic and epigenetic factors within regulatory elements in B cells from primary Sjogren’s syndrome patients. Front Immunol 6:437. doi:10.3389/fimmu.2015.00437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Konsta OD, Le Dantec C, Brooks WH, Renaudineau Y (2015) Genetics and Epigenetics of Autoimmune Diseases. eLS:1–9. doi: 10.1002/9780470015902.a0023593

  6. Renaudineau Y, Ballestar E (2016) Epigenetics: DNA methylation signatures in Sjogren syndrome. Nat Rev Rheumatol 12(10):565–566. doi:10.1038/nrrheum.2016.144

    Article  CAS  PubMed  Google Scholar 

  7. Charras A, Konsta OD, Le Dantec C, Bagacean C, Kapsogeorgou EK, Tzioufas AG, Pers JO, Bordron A, Renaudineau Y (2017) Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjogren’s syndrome. Ann Rheum Dis 76(3):625–628. doi:10.1136/annrheumdis-2016-210167

    Article  PubMed  Google Scholar 

  8. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK (1994) Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1(3):219–229

    Article  CAS  PubMed  Google Scholar 

  9. Morel L, Yu Y, Blenman KR, Caldwell RA, Wakeland EK (1996) Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mammalian genome : official journal of the International Mammalian Genome Society 7(5):335–339

    Article  CAS  Google Scholar 

  10. Morel L, Croker BP, Blenman KR, Mohan C, Huang G, Gilkeson G, Wakeland EK (2000) Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci U S A 97(12):6670–6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, Drappa J, Wang L, Greth W, investigators CDs (2016) Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(11):1909–1916. doi:10.1136/annrheumdis-2015-208562

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peng L, Oganesyan V, Wu H, Dall’Acqua WF, Damschroder MM (2015) Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-alpha receptor 1 antibody. MAbs 7(2):428–439. doi:10.1080/19420862.2015.1007810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, Haelterman E, Grouard-Vogel G, Fanget B, Dhellin O, Vandepapeliere P, Houssiau FA (2013) Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon alpha-kinoid. Arthritis & Rheumatism 65(2):447–456. doi:10.1002/art.37785

    Article  CAS  Google Scholar 

  14. Ducreux J, Houssiau FA, Vandepapeliere P, Jorgensen C, Lazaro E, Spertini F, Colaone F, Roucairol C, Laborie M, Croughs T, Grouard-Vogel G, Lauwerys BR (2016) Interferon alpha kinoid induces neutralizing anti-interferon alpha antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon alpha kinoid phase I/II study. Rheumatology (Oxford) 55(10):1901–1905. doi:10.1093/rheumatology/kew262

    Article  Google Scholar 

  15. Liu Z, Bethunaickan R, Huang W, Lodhi U, Solano I, Madaio MP, Davidson A (2011) Interferon-alpha accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis & Rheumatism 63(1):219–229. doi:10.1002/art.30087

    Article  CAS  Google Scholar 

  16. Mathian A, Weinberg A, Gallegos M, Banchereau J, Koutouzov S (2005) IFN-alpha induces early lethal lupus in preautoimmune (New Zealand black x New Zealand White) F1 but not in BALB/c mice. J Immunol 174(5):2499–2506

    Article  CAS  PubMed  Google Scholar 

  17. Fairhurst AM, Mathian A, Connolly JE, Wang A, Gray HF, George TA, Boudreaux CD, Zhou XJ, Li QZ, Koutouzov S, Banchereau J, Wakeland EK (2008) Systemic IFN-alpha drives kidney nephritis in B6.Sle123 mice. Eur J Immunol 38(7):1948–1960. doi:10.1002/eji.200837925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vidal S, Kono DH, Theofilopoulos AN (1998) Loci predisposing to autoimmunity in MRL-Fas lpr and C57BL/6-Faslpr mice. J Clin Invest 101(3):696–702. doi:10.1172/JCI1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y (2008) Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol Histopathol 23(4):411–422

    CAS  PubMed  Google Scholar 

  20. Santiago-Raber ML, Haraldsson MK, Theofilopoulos AN, Kono DH (2007) Characterization of reciprocal Lmb1-4 interval MRL-Faslpr and C57BL/6-Faslpr congenic mice reveals significant effects from Lmb3. J Immunol 178(12):8195–8202

    Article  CAS  PubMed  Google Scholar 

  21. Kong PL, Morel L, Croker BP, Craft J (2004) The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. J Immunol 172(5):2785–2794

    Article  CAS  PubMed  Google Scholar 

  22. Yamada A, Miyazaki T, Lu LM, Ono M, Ito MR, Terada M, Mori S, Hata K, Nozaki Y, Nakatsuru S, Nakamura Y, Onji M, Nose M (2003) Genetic basis of tissue specificity of vasculitis in MRL/lpr mice. Arthritis & Rheumatism 48(5):1445–1451. doi:10.1002/art.10952

    Article  CAS  Google Scholar 

  23. Kamogawa J, Terada M, Mizuki S, Nishihara M, Yamamoto H, Mori S, Abe Y, Morimoto K, Nakatsuru S, Nakamura Y, Nose M (2002) Arthritis in MRL/lpr mice is under the control of multiple gene loci with an allelic combination derived from the original inbred strains. Arthritis & Rheumatism 46(4):1067–1074

    Article  CAS  Google Scholar 

  24. Nishihara M, Terada M, Kamogawa J, Ohashi Y, Mori S, Nakatsuru S, Nakamura Y, Nose M (1999) Genetic basis of autoimmune sialadenitis in MRL/lpr lupus-prone mice: additive and hierarchical properties of polygenic inheritance. Arthritis & Rheumatism 42(12):2616–2623. doi:10.1002/1529-0131(199912)42:12<2616::AID-ANR16>3.0.CO;2-O

    Article  CAS  Google Scholar 

  25. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103(26):9970–9975. doi:10.1073/pnas.0603912103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fairhurst AM, Hwang SH, Wang A, Tian XH, Boudreaux C, Zhou XJ, Casco J, Li QZ, Connolly JE, Wakeland EK (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978. doi:10.1002/eji.200838138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanrotel-Saliou C, Segalen I, Le Meur Y, Youinou P, Renaudineau Y (2011) Glomerular antibodies in lupus nephritis. Clinical reviews in allergy & immunology 40(3):151–158. doi:10.1007/s12016-010-8204-4

    Article  CAS  Google Scholar 

  28. Seret G, Canas F, Pougnet-Di Costanzo L, Hanrotel-Saliou C, Jousse-Joulin S, Le Meur Y, Saraux A, Valeri A, Putterman C, Youinou P, Rojas-Villarraga A, Anaya JM, Renaudineau Y (2015) Anti-alpha-actinin antibodies are part of the anti-cell membrane antibody spectrum that characterize patients with lupus nephritis. J Autoimmun 61:54–61. doi:10.1016/j.jaut.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  29. Renaudineau Y, Croquefer S, Jousse S, Renaudineau E, Devauchelle V, Gueguen P, Hanrotel C, Gilburd B, Saraux A, Shoenfeld Y, Putterman C, Youinou P (2006) Association of alpha-actinin-binding anti-double-stranded DNA antibodies with lupus nephritis. Arthritis & Rheumatism 54(8):2523–2532. doi:10.1002/art.22015

    Article  CAS  Google Scholar 

  30. Xie C, Zhou XJ, Liu X, Mohan C (2003) Enhanced susceptibility to end-organ disease in the lupus-facilitating NZW mouse strain. Arthritis & Rheumatism 48(4):1080–1092. doi:10.1002/art.10887

    Article  CAS  Google Scholar 

  31. Li QZ, Zhou J, Yang R, Yan M, Ye Q, Liu K, Liu S, Shao X, Li L, Zhou XJ, Wakeland EK, Mohan C (2009) The lupus-susceptibility gene kallikrein downmodulates antibody-mediated glomerulonephritis. Genes Immun 10(5):503–508. doi:10.1038/gene.2009.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohan C, Adams S, Stanik V, Datta SK (1993) Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 177(5):1367–1381

    Article  CAS  PubMed  Google Scholar 

  33. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK (1999) Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest 104(3):345–355. doi:10.1172/JCI6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wofsy D, Seaman WE (1985) Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Exp Med 161(2):378–391

    Article  CAS  PubMed  Google Scholar 

  35. Wofsy D, Seaman WE (1987) Reversal of advanced murine lupus in NZB/NZW F1 mice by treatment with monoclonal antibody to L3T4. J Immunol 138(10):3247–3253

    CAS  PubMed  Google Scholar 

  36. Carteron NL, Wofsy D, Schimenti C, Ermak TH (1990) F(ab’)2 anti-CD4 and intact anti-CD4 monoclonal antibodies inhibit the accumulation of CD4+ T cells, CD8+ T cells, and B cells in the kidneys of lupus-prone NZB/NZW mice. Clin Immunol Immunopathol 56(3):373–383

    Article  CAS  PubMed  Google Scholar 

  37. Connolly K, Roubinian JR, Wofsy D (1992) Development of murine lupus in CD4-depleted NZB/NZW mice. Sustained inhibition of residual CD4+ T cells is required to suppress autoimmunity. J Immunol 149(9):3083–3088

    CAS  PubMed  Google Scholar 

  38. Santoro TJ, Portanova JP, Kotzin BL (1988) The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med 167(5):1713–1718

    Article  CAS  PubMed  Google Scholar 

  39. Merino R, Iwamoto M, Fossati L, Izui S (1993) Polyclonal B cell activation arises from different mechanisms in lupus-prone (NZB x NZW)F1 and MRL/MpJ-lpr/lpr mice. J Immunol 151(11):6509–6516

    CAS  PubMed  Google Scholar 

  40. Chesnutt MS, Finck BK, Killeen N, Connolly MK, Goodman H, Wofsy D (1998) Enhanced lymphoproliferation and diminished autoimmunity in CD4-deficient MRL/lpr mice. Clin Immunol Immunopathol 87(1):23–32

    Article  CAS  PubMed  Google Scholar 

  41. Mohan C, Alas E, Morel L, Yang P, Wakeland EK (1998) Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest 101(6):1362–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sobel ES, Satoh M, Chen Y, Wakeland EK, Morel L (2002) The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells. J Immunol 169(5):2694–2700

    Article  CAS  PubMed  Google Scholar 

  43. Sobel ES, Mohan C, Morel L, Schiffenbauer J, Wakeland EK (1999) Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. J Immunol 162(4):2415–2421

    CAS  PubMed  Google Scholar 

  44. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH, Yim YS, Pertsemlidis A, Garner HR Jr, Morel L, Wakeland EK (2004) Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21(6):769–780. doi:10.1016/j.immuni.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  45. Wong EB, Khan TN, Mohan C, Rahman ZS (2012) The lupus-prone NZM2410/NZW strain-derived Sle1b sublocus alters the germinal center checkpoint in female mice in a B cell-intrinsic manner. J Immunol 189(12):5667–5681. doi:10.4049/jimmunol.1201661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC (2010) Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis & Rheumatism 62(1):234–244. doi:10.1002/art.25032

    Article  CAS  Google Scholar 

  47. Jacquemin C, Schmitt N, Contin-Bordes C, Liu Y, Narayanan P, Seneschal J, Maurouard T, Dougall D, Davizon ES, Dumortier H, Douchet I, Raffray L, Richez C, Lazaro E, Duffau P, Truchetet ME, Khoryati L, Mercie P, Couzi L, Merville P, Schaeverbeke T, Viallard JF, Pellegrin JL, Moreau JF, Muller S, Zurawski S, Coffman RL, Pascual V, Ueno H, Blanco P (2015) OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42(6):1159–1170. doi:10.1016/j.immuni.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohan C, Yu Y, Morel L, Yang P, Wakeland EK (1999) Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J Immunol 162(11):6492–6502

    CAS  PubMed  Google Scholar 

  49. Bethunaickan R, Berthier CC, Zhang W, Eksi R, Li HD, Guan Y, Kretzler M, Davidson A (2014) Identification of stage-specific genes associated with lupus nephritis and response to remission induction in (NZB x NZW)F1 and NZM2410 mice. Arthritis & Rheumatology 66(8):2246–2258. doi:10.1002/art.38679

    Article  CAS  Google Scholar 

  50. Bethunaickan R, Berthier CC, Zhang W, Kretzler M, Davidson A (2013) Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PLoS One 8(10):e77489. doi:10.1371/journal.pone.0077489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27(5):801–810. doi:10.1016/j.immuni.2007.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Curotto de Lafaille MA, Wakeland EK, Fairhurst AM (2012) B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J Immunol 189(12):5786–5796. doi:10.4049/jimmunol.1202195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI (2006) Suppression of disease in New Zealand black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177(3):1451–1459

    Article  CAS  PubMed  Google Scholar 

  54. Humrich JY, Morbach H, Undeutsch R, Enghard P, Rosenberger S, Weigert O, Kloke L, Heimann J, Gaber T, Brandenburg S, Scheffold A, Huehn J, Radbruch A, Burmester GR, Riemekasten G (2010) Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci U S A 107(1):204–209. doi:10.1073/pnas.0903158107

    Article  CAS  PubMed  Google Scholar 

  55. Yang CH, Tian L, Ling GS, Trendell-Smith NJ, Ma L, Lo CK, Stott DI, Liew FY, Huang FP (2008) Immunological mechanisms and clinical implications of regulatory T cell deficiency in a systemic autoimmune disorder: roles of IL-2 versus IL-15. Eur J Immunol 38(6):1664–1676. doi:10.1002/eji.200838190

    Article  CAS  PubMed  Google Scholar 

  56. Divekar AA, Dubey S, Gangalum PR, Singh RR (2011) Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186(2):924–930. doi:10.4049/jimmunol.1002218

    Article  CAS  PubMed  Google Scholar 

  57. Cuda CM, Wan S, Sobel ES, Croker BP, Morel L (2007) Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J Immunol 179(11):7439–7447

    Article  CAS  PubMed  Google Scholar 

  58. Wan S, Xia C, Morel L (2007) IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol 178(1):271–279

    Article  CAS  PubMed  Google Scholar 

  59. Weigert O, von Spee C, Undeutsch R, Kloke L, Humrich JY, Riemekasten G (2013) CD4+Foxp3+ regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice. Arthritis research & therapy 15(1):R35. doi:10.1186/ar4188

    Article  CAS  Google Scholar 

  60. Yan JJ, Lee JG, Jang JY, Koo TY, Ahn C, Yang J (2017) IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4+CD25+Foxp3+ regulatory T cells. Kidney Int 91(3):603–615. doi:10.1016/j.kint.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  61. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, Enghard P, Sawitzki B, Hiepe F, Radbruch A, Burmester GR, Riemekasten G, Humrich JY (2016) Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis 75(7):1407–1415. doi:10.1136/annrheumdis-2015-207776

    Article  Google Scholar 

  62. Yang JQ, Kim PJ, Halder RC, Singh RR (2013) Intrinsic hyporesponsiveness of invariant natural killer T cells precedes the onset of lupus. Clin Exp Immunol 173(1):18–27. doi:10.1111/cei.12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang JQ, Wen X, Kim PJ, Singh RR (2011) Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J Immunol 186(3):1512–1520. doi:10.4049/jimmunol.1002373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wermeling F, Lind SM, Jordo ED, Cardell SL, Karlsson MC (2010) Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J Exp Med 207(5):943–952. doi:10.1084/jem.20091314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112(8):1211–1222. doi:10.1172/JCI17165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang JQ, Kim PJ, Singh RR (2012) Brief treatment with iNKT cell ligand alpha-galactosylceramide confers a long-term protection against lupus. J Clin Immunol 32(1):106–113. doi:10.1007/s10875-011-9590-y

    Article  CAS  PubMed  Google Scholar 

  67. Karpouzas GA, La Cava A, Ebling FM, Singh RR, Hahn BH (2004) Differences between CD8+ T cells in lupus-prone (NZB x NZW) F1 mice and healthy (BALB/c x NZW) F1 mice may influence autoimmunity in the lupus model. Eur J Immunol 34(9):2489–2499. doi:10.1002/eji.200424978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruiz PJ, Zinger H, Mozes E (1996) Effect of injection of anti-CD4 and anti-CD8 monoclonal antibodies on the development of experimental systemic lupus erythematosus in mice. Cell Immunol 167(1):30–37. doi:10.1006/cimm.1996.0004

    Article  CAS  PubMed  Google Scholar 

  69. Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H (2010) Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature 467(7313):328–332. doi:10.1038/nature09370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim HJ, Wang X, Radfar S, Sproule TJ, Roopenian DC, Cantor H (2011) CD8+ T regulatory cells express the Ly49 class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc Natl Acad Sci U S A 108(5):2010–2015. doi:10.1073/pnas.1018974108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsumiyama K, Hashiramoto A, Takimoto M, Tsuji-Kawahara S, Miyazawa M, Shiozawa S (2013) IFN-gamma-producing effector CD8 T lymphocytes cause immune glomerular injury by recognizing antigen presented as immune complex on target tissue. J Immunol 191(1):91–96. doi:10.4049/jimmunol.1203217

    Article  CAS  PubMed  Google Scholar 

  72. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C (2009) Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 119(5):1286–1297. doi:10.1172/JCI38399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Couzi L, Merville P, Deminiere C, Moreau JF, Combe C, Pellegrin JL, Viallard JF, Blanco P (2007) Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis & Rheumatism 56(7):2362–2370. doi:10.1002/art.22654

    Article  CAS  Google Scholar 

  74. Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA (2013) B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 32(4):428–444. doi:10.3109/08830185.2013.788648

    Article  CAS  PubMed  Google Scholar 

  75. Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA (2013) Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Investig 43(8):866–880. doi:10.1111/eci.12111

    Article  CAS  Google Scholar 

  76. Youinou P, Taher TE, Pers JO, Mageed RA, Renaudineau Y (2009) B lymphocyte cytokines and rheumatic autoimmune disease. Arthritis & Rheumatism 60(7):1873–1880. doi:10.1002/art.24665

    Article  CAS  Google Scholar 

  77. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P (2004) Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 3(7–8):516–523. doi:10.1016/j.autrev.2004.07.035

    Article  CAS  PubMed  Google Scholar 

  78. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, Hansen A, Burmester GR, Diamond B, Lipsky PE, Dorner T (2008) Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis & Rheumatism 58(6):1762–1773. doi:10.1002/art.23498

    Article  CAS  Google Scholar 

  79. Simonin L, Pasquier E, Leroyer C, Cornec D, Lemerle J, Bendaoud B, Hillion S, Pers J-O, Couturaud F, Renaudineau Y (2016) Lymphocyte disturbances in primary antiphospholipid syndrome and application to venous thromboembolism follow-up. Clinical reviews in allergy & immunology:1–14. doi:10.1007/s12016-016-8568-1

  80. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterization of circulating human transitional B cells. Blood 105(11):4390–4398. doi:10.1182/blood-2004-11-4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garaud S, Le Dantec C, de Mendoza AR, Mageed RA, Youinou P, Renaudineau Y (2009) IL-10 production by B cells expressing CD5 with the alternative exon 1B. Ann N Y Acad Sci 1173:280–285. doi:10.1111/j.1749-6632.2009.04616.x

    Article  CAS  PubMed  Google Scholar 

  82. Youinou P, Renaudineau Y (2011) CD5 expression in B cells from patients with systemic lupus erythematosus. Crit Rev Immunol 31(1):31–42

    Article  CAS  PubMed  Google Scholar 

  83. Mohan C, Morel L, Yang P, Wakeland EK (1998) Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis & Rheumatism 41(9):1652–1662. doi:10.1002/1529-0131(199809)41:9<1652::AID-ART17>3.0.CO;2-W

    Article  CAS  Google Scholar 

  84. Xu Z, Morel L (2015) Contribution of B-1a cells to systemic lupus erythematosus in the NZM2410 mouse model. Ann N Y Acad Sci 1362:215–223. doi:10.1111/nyas.12607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holodick NE, Zeumer L, Rothstein TL, Morel L (2016) Expansion of B-1a cells with germline heavy chain sequence in lupus mice. Front Immunol 7:108. doi:10.3389/fimmu.2016.00108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Xu Z, Butfiloski EJ, Sobel ES, Morel L (2004) Mechanisms of peritoneal B-1a cells accumulation induced by murine lupus susceptibility locus Sle2. J Immunol 173(10):6050–6058

    Article  CAS  PubMed  Google Scholar 

  87. Xu Z, Duan B, Croker BP, Wakeland EK, Morel L (2005) Genetic dissection of the murine lupus susceptibility locus Sle2: contributions to increased peritoneal B-1a cells and lupus nephritis map to different loci. J Immunol 175(2):936–943

    Article  CAS  PubMed  Google Scholar 

  88. Renaudineau Y, Bariller E, Pers JO (2014) B1- and CD5-positive B cells. In: eLS. John Wiley & Sons, ltd. doi:10.1002/9780470015902.a0024242

  89. Ye YL, Chuang YH, Chiang BL (1996) In vitro and in vivo functional analysis of CD5+ and CD5- B cells of autoimmune NZB x NZW F1 mice. Clin Exp Immunol 106(2):253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mageed RA, Garaud S, Taher TE, Parikh K, Pers JO, Jamin C, Renaudineau Y, Youinou P (2012) CD5 expression promotes multiple intracellular signaling pathways in B lymphocyte. Autoimmun Rev. doi:10.1016/j.autrev.2012.02.007

    PubMed  Google Scholar 

  91. Garaud S, Taher TE, Debant M, Burgos M, Melayah S, Berthou C, Parikh K, Pers JO, Luque-Paz D, Chiocchia G, Peppelenbosch M, Isenberg DA, Youinou P, Mignen O, Renaudineau Y, Mageed RA (2016) CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes. Cellular & molecular immunology. doi:10.1038/cmi.2016.42

    Google Scholar 

  92. Garaud S, Morva A, Lemoine S, Hillion S, Bordron A, Pers JO, Berthou C, Mageed RA, Renaudineau Y, Youinou P (2011) CD5 promotes IL-10 production in chronic lymphocytic leukemia B cells through STAT3 and NFAT2 activation. J Immunol 186(8):4835–4844. doi:10.4049/jimmunol.1003050

    Article  CAS  PubMed  Google Scholar 

  93. Roy V, Chang NH, Cai Y, Bonventi G, Wither J (2005) Aberrant IgM signaling promotes survival of transitional T1 B cells and prevents tolerance induction in lupus-prone New Zealand black mice. J Immunol 175(11):7363–7371

    Article  CAS  PubMed  Google Scholar 

  94. Giltiay NV, Chappell CP, Sun X, Kolhatkar N, Teal TH, Wiedeman AE, Kim J, Tanaka L, Buechler MB, Hamerman JA, Imanishi-Kari T, Clark EA, Elkon KB (2013) Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J Exp Med 210(12):2773–2789. doi:10.1084/jem.20122798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kumar KR, Li L, Yan M, Bhaskarabhatla M, Mobley AB, Nguyen C, Mooney JM, Schatzle JD, Wakeland EK, Mohan C (2006) Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312(5780):1665–1669. doi:10.1126/science.1125893

    Article  CAS  PubMed  Google Scholar 

  96. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, Browning JL, Mackay F (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192(10):1453–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Teague BN, Pan Y, Mudd PA, Nakken B, Zhang Q, Szodoray P, Kim-Howard X, Wilson PC, Farris AD (2007) Cutting edge: transitional T3 B cells do not give rise to mature B cells, have undergone selection, and are reduced in murine lupus. J Immunol 178(12):7511–7515

    Article  CAS  PubMed  Google Scholar 

  98. Hoyer BF, Moser K, Hauser AE, Peddinghaus A, Voigt C, Eilat D, Radbruch A, Hiepe F, Manz RA (2004) Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 199(11):1577–1584. doi:10.1084/jem.20040168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mumtaz IM, Hoyer BF, Panne D, Moser K, Winter O, Cheng QY, Yoshida T, Burmester GR, Radbruch A, Manz RA, Hiepe F (2012) Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 39(3):180–188. doi:10.1016/j.jaut.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  100. Cheng Q, Mumtaz IM, Khodadadi L, Radbruch A, Hoyer BF, Hiepe F (2013) Autoantibodies from long-lived 'memory' plasma cells of NZB/W mice drive immune complex nephritis. Ann Rheum Dis 72(12):2011–2017. doi:10.1136/annrheumdis-2013-203455

    Article  CAS  PubMed  Google Scholar 

  101. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14(7):748–755. doi:10.1038/nm1763

    Article  CAS  PubMed  Google Scholar 

  102. Khodadadi L, Cheng Q, Alexander T, Sercan-Alp O, Klotsche J, Radbruch A, Hiepe F, Hoyer BF, Taddeo A (2015) Bortezomib plus continuous B cell depletion results in Sustained plasma cell depletion and amelioration of lupus nephritis in NZB/W F1 mice. PLoS One 10(8):e0135081. doi:10.1371/journal.pone.0135081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Taddeo A, Khodadadi L, Voigt C, Mumtaz IM, Cheng Q, Moser K, Alexander T, Manz RA, Radbruch A, Hiepe F, Hoyer BF (2015) Long-lived plasma cells are early and constantly generated in New Zealand black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis research & therapy 17:39. doi:10.1186/s13075-015-0551-3

    Article  Google Scholar 

  104. Seret G, Hanrotel C, Bendaoud B, Le Meur Y, Renaudineau Y (2013) Homozygous FCGR3A-158F mutation is associated with delayed B-cell depletion following rituximab but with preserved efficacy in a patient with refractory lupus nephritis. Clin Kidney J 6(1):74–76. doi:10.1093/ckj/sfs162

    Article  CAS  PubMed  Google Scholar 

  105. Devauchelle-Pensec V, Morvan J, Rat AC, Jousse-Joulin S, Pennec Y, Pers JO, Jamin C, Renaudineau Y, Quintin-Roue I, Cochener B, Youinou P, Saraux A (2011) Effects of rituximab therapy on quality of life in patients with primary Sjogren’s syndrome. Clin Exp Rheumatol 29(1):6–12

    PubMed  Google Scholar 

  106. Renaudineau Y, Devauchelle-Pensec V, Hanrotel C, Pers JO, Saraux A, Youinou P (2009) Monoclonal anti-CD20 antibodies: mechanisms of action and monitoring of biological effects. Joint Bone Spine 76(5):458–463. doi:10.1016/j.jbspin.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  107. Jousse-Joulin S, Devauchelle-Pensec V, Morvan J, Guias B, Pennec Y, Pers JO, Daridon C, Jamin C, Renaudineau Y, Roue IQ, Cochener B, Bressollette L, Youinou P, Saraux A (2007) Ultrasound assessment of salivary glands in patients with primary Sjogren’s syndrome treated with rituximab: quantitative and Doppler waveform analysis. Biologics : targets & therapy 1(3):311–319

    CAS  Google Scholar 

  108. Devauchelle-Pensec V, Pennec Y, Morvan J, Pers JO, Daridon C, Jousse-Joulin S, Roudaut A, Jamin C, Renaudineau Y, Roue IQ, Cochener B, Youinou P, Saraux A (2007) Improvement of Sjogren’s syndrome after two infusions of rituximab (anti-CD20). Arthritis & Rheumatism 57(2):310–317. doi:10.1002/art.22536

    Article  CAS  Google Scholar 

  109. Pers JO, Devauchelle V, Daridon C, Bendaoud B, Le Berre R, Bordron A, Hutin P, Renaudineau Y, Dueymes M, Loisel S, Berthou C, Saraux A, Youinou P (2007) BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjogren’s syndrome. Arthritis & Rheumatism 56(5):1464–1477. doi:10.1002/art.22603

    Article  Google Scholar 

  110. Mahevas M, Patin P, Huetz F, Descatoire M, Cagnard N, Bole-Feysot C, Le Gallou S, Khellaf M, Fain O, Boutboul D, Galicier L, Ebbo M, Lambotte O, Hamidou M, Bierling P, Godeau B, Michel M, Weill JC, Reynaud CA (2013) B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. J Clin Invest 123(1):432–442. doi:10.1172/JCI65689

    Article  CAS  PubMed  Google Scholar 

  111. Mahevas M, Michel M, Vingert B, Moroch J, Boutboul D, Audia S, Cagnard N, Ripa J, Menard C, Tarte K, Megret J, Le Gallou S, Patin P, Thai L, Galicier L, Bonnotte B, Godeau B, Noizat-Pirenne F, Weill JC, Reynaud CA (2015) Emergence of long-lived autoreactive plasma cells in the spleen of primary warm auto-immune hemolytic anemia patients treated with rituximab. J Autoimmun 62:22–30. doi:10.1016/j.jaut.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  112. Morell M, Varela N, Maranon C (2017) Myeloid populations are altered in systemic autoimmune diseases. Clinical reviews in allergy & immunology

  113. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, Kirchner T, Kalden JR, Herrmann M (2002) Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis & Rheumatism 46(1):191–201. doi:10.1002/1529-0131(200201)46:1<191::AID-ART10027>3.0.CO;2-K

    Article  Google Scholar 

  114. Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L, Bolland S, D’Agati V, Elkon KB, Reizis B (2014) Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 211(10):1969–1976. doi:10.1084/jem.20132522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294(5546):1540–1543. doi:10.1126/science.1064890

    Article  CAS  PubMed  Google Scholar 

  116. Celhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang SH, Lee HY, Yasuga H, Jones LA, Casco J, Lee B, Thamboo TP, Zhou XJ, Poidinger M, Connolly JE, Wakeland EK, Fairhurst AM (2015) RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U S A 112(45):E6195–E6204. doi:10.1073/pnas.1507052112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES, Wakeland EK, Mohan C (2005) T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest 115(7):1869–1878. doi:10.1172/JCI23049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sahu R, Bethunaickan R, Singh S, Davidson A (2014) Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis & Rheumatology 66(6):1596–1607. doi:10.1002/art.38410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Lauwerys.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by a grant from the Fonds National de la Recherche Scientifique. A. De Groof is supported by the “Chaire UCB/UCL sur les rhumatismes inflammatoires et systémiques”. B. Lauwerys is supported in part by the Fonds National de la Recherche Scientifique (Communauté française de Belgique), and P. Hemon by a SATT Ouest Valorisation grant.

Ethical Approval

All animal experiments reported in this manuscript were approved by the ethical committee of the Université catholique de Louvain (Secteur des Sciences de la Santé), and by the ethical committee of the Université de Bretagne Occidentale (Brest).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Groof, A., Hémon, P., Mignen, O. et al. Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clinic Rev Allerg Immunol 53, 181–197 (2017). https://doi.org/10.1007/s12016-017-8605-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-017-8605-8

Keywords

Navigation