Skip to main content
Log in

Effect of Metformin on Epidermal Neural Crest Stem Cells and Their Potential Application in Ameliorating Paclitaxel-induced Neurotoxicity Phenotype

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Aims

Epidermal Neural Crest Stem Cells (EPI-NCSCs) have emerged as prospective ideal candidates to meet the fundamental requirements of cell-based therapies in neurodegenerative disorders. The present study aimed to identify the potential of metformin in driving EPI-NCSCs to neuronal/glial differentiation and express neurotrophic factors as well as assess their therapeutic potential for mitigating the main behavioral manifestations of chemotherapy-induced neurotoxicity (CIN).

Main Methods

EPI-NCSCs were extracted from the bulge region of hair follicle. Following expansion, transcript and protein expression profiles of key markers for stemness (Nestin, EGR-1, SOX-2 and 10), neurotrophic activity (BDNF, GDNF, NGF, FGF-2, and IL-6), and neuronal (TUB3, DCX, NRF and NeuN) and glial (PDGFRα, NG2, GFAP, and MBP) differentiation were determined on days 1 and 7 post-treatment with 10 and 100 μM metformin using real time-PCR and immunocytochemistry methods. Then, the in vivo function of metformin-treated stem cells was evaluated in the context of paclitaxel CIN. To do so, thermal hyperalgesia, mechanical allodynia, and spatial learning and memory tests were evaluated by Hotplate, Von Frey, and Morris water maze tests.

Key Findings

Our result indicated that exposure of EPI-NCSCs to metformin was associated with progressive decline in stemness markers and enhanced expression levels of several neurotrophic, neuron and oligodendrocyte-specific markers. Further, it was observed that intranasal metformin-treated EPI-NCSCs improved the cognitive impairment, and mechanical and thermal hypersensitivity induced by paclitaxel in rats.

Significance

Collectively, we reasoned that metformin pretreatment of EPI-NCSCs might further enhance their therapeutic benefits against CIN.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahn, M. J., & Cho, G. W. (2017). Metformin promotes neuronal differentiation and neurite outgrowth through AMPK activation in human bone marrow–mesenchymal stem cells. Biotechnology and Applied Biochemistry, 64(6), 836–842.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Massri, K. F., Ahmed, L. A., & El-Abhar, H. S. (2020). Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 108–122.

    Article  CAS  PubMed  Google Scholar 

  3. Albert, K., Niskanen, J., Kälvälä, S., & Lehtonen, Š. (2021). Utilising induced pluripotent stem cells in neurodegenerative disease research: Focus on glia. International Journal of Molecular Sciences, 22(9), 4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. AsgariTaei, A., Dargahi, L., Khodabakhsh, P., Kadivar, M., & Farahmandfar, M. (2022). Hippocampal neuroprotection mediated by secretome of human mesenchymal stem cells against experimental stroke. CNS Neuroscience & Therapeutics, 28(9), 1425–1438.

    Article  CAS  Google Scholar 

  5. AsgariTaei, A., Khodabakhsh, P., Nasoohi, S., Farahmandfar, M., & Dargahi, L. (2022). Paracrine effects of mesenchymal stem cells in ischemic stroke: Opportunities and challenges. Molecular Neurobiology, 59(10), 6281–6306.

    Article  CAS  PubMed  Google Scholar 

  6. Bahlakeh, G., Rahbarghazi, R., Mohammadnejad, D., Abedelahi, A., & Karimipour, M. (2021). Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: Focus on available approaches. Cell & Bioscience, 11(1), 1–24.

    Article  Google Scholar 

  7. Bergkvist, A., Rusnakova, V., Sindelka, R., Garda, J. M. A., Sjögreen, B., Lindh, D., Forootan, A., & Kubista, M. (2010). Gene expression profiling–clusters of possibilities. Methods, 50(4), 323–335.

  8. Boukelmoune, N., Laumet, G., Tang, Y., Ma, J., Mahant, I., Singh, S. K., Nijboer, C., Benders, M., Kavelaars, A., & Heijnen, C. J. (2021). Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain, Behavior, and Immunity, 93, 43–54.

    Article  CAS  PubMed  Google Scholar 

  9. Chiang, M.-C., Cheng, Y.-C., Chen, S.-J., Yen, C.-H., & Huang, R.-N. (2016). Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Experimental Cell Research, 347(2), 322–331.

    Article  CAS  PubMed  Google Scholar 

  10. Chiu, G. S., Boukelmoune, N., Chiang, A. C., Peng, B., Rao, V., Kingsley, C., Liu, H.-L., Kavelaars, A., Kesler, S. R., & Heijnen, C. J. (2018). Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget, 9(85), 35581.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung, M.-M., Chen, Y.-L., Pei, D., Cheng, Y.-C., Sun, B., Nicol, C. J., Yen, C.-H., Chen, H.-M., Liang, Y.-J., & Chiang, M.-C. (2015). The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(5), 720–731.

  12. Dadwal, P., Mahmud, N., Sinai, L., Azimi, A., Fatt, M., Wondisford, F. E., Miller, F. D., & Morshead, C. M. (2015). Activating endogenous neural precursor cells using metformin leads to neural repair and functional recovery in a model of childhood brain injury. Stem Cell Reports, 5(2), 166–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies, M. J., D’Alessio, D. A., Fradkin, J., Kernan, W. N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 41(12), 2669–2701.

  14. De Luca, M., Aiuti, A., Cossu, G., Parmar, M., Pellegrini, G., & Robey, P. G. (2019). Advances in stem cell research and therapeutic development. Nature Cell Biology, 21(7), 801–811.

    Article  PubMed  Google Scholar 

  15. Demaré, S., Kothari, A., Calcutt, N. A., & Fernyhough, P. (2021). Metformin as a potential therapeutic for neurological disease: Mobilizing AMPK to repair the nervous system. Expert Review of Neurotherapeutics, 21(1), 45–63.

    Article  PubMed  Google Scholar 

  16. Desforges, A. D., Hebert, C. M., Spence, A. L., Reid, B., Dhaibar, H. A., Cruz-Topete, D., Cornett, E. M., Kaye, A. D., Urits, I., & Viswanath, O. (2022). Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update. Biomedicine & Pharmacotherapy, 147, 112671. https://doi.org/10.1016/j.biopha.2022.112671

    Article  CAS  Google Scholar 

  17. Donega, V., van Velthoven, C. T., Nijboer, C. H., van Bel, F., Kas, M. J., Kavelaars, A., & Heijnen, C. J. (2013). Intranasal mesenchymal stem cell treatment for neonatal brain damage: Long-term cognitive and sensorimotor improvement. PLoS ONE, 8(1), e51253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eddy, N. B., & Leimbach, D. (1953). Synthetic analgesics. II. Dithienylbutenyl-and dithienylbutylamines. Journal of Pharmacology and Experimental Therapeutics, 107(3), 385–393.

  19. El Ouaamari, Y., Van den Bos, J., Willekens, B., Cools, N., & Wens, I. (2023). Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives. International Journal of Molecular Sciences, 24(4), 3866.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., & Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170.

    Article  PubMed  Google Scholar 

  21. Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., Racordon, D., Garrido, M., Ibañez, C., Kato, S., Brañes, J., & Pizarro, J. (2013). Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reproductive Sciences, 20(12), 1433–1446.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Esmaeilzade, B., Nobakht, M., Joghataei, M. T., Roshandel, N. R., Rasouli, H., Kuchaksaraei, A. S., Hosseini, S. M., Najafzade, N., Asalgoo, S., & Hejazian, L. B. (2012). Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in alzheimer’s disease rat model. Iranian Biomedical Journal, 16(1), 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, W., Zhang, J., Hong, L., Huang, W., Dai, X., Ye, Q., & Chen, X. (2020). Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. Journal of Affective Disorders, 260, 302–313.

    Article  CAS  PubMed  Google Scholar 

  24. Fatt, M., Hsu, K., He, L., Wondisford, F., Miller, F. D., Kaplan, D. R., & Wang, J. (2015). Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Reports, 5(6), 988–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoogduijn, M. J., Roemeling-van Rhijn, M., Engela, A. U., Korevaar, S. S., Mensah, F. K., Franquesa, M., de Bruin, R. W., Betjes, M. G., Weimar, W., & Baan, C. C. (2013). Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells and Development, 22(21), 2825–2835.

    Article  CAS  PubMed  Google Scholar 

  26. Houshmand, F., Barati, M., Golab, F., Ramezani-Sefidar, S., Tanbakooie, S., Tabatabaei, M., Amiri, M., & Sanadgol, N. (2019). Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. DARU Journal of Pharmaceutical Sciences, 27, 583–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, Y. F., Zhang, Z. J., & Sieber-Blum, M. (2006). An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Stem Cells, 24(12), 2692–2702.

    Article  CAS  PubMed  Google Scholar 

  28. Ikhsan, M., Palumbo, A., Rose, D., Zille, M., & Boltze, J. (2019). Neuronal stem cell and drug interactions: a systematic review and meta-analysis: Concise review. Stem Cells Translational Medicine, 8(11), 1202–1211. https://doi.org/10.1002/sctm.19-0020

    Article  PubMed  PubMed Central  Google Scholar 

  29. Janelsins, M. C., Kesler, S. R., Ahles, T. A., & Morrow, G. R. (2014). Prevalence, mechanisms, and management of cancer-related cognitive impairment. International Review of Psychiatry, 26(1), 102–113.

    Article  PubMed  Google Scholar 

  30. Johnson, N. J., Hanson, L. R., & Frey, W. H. (2010). Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Molecular Pharmaceutics, 7(3), 884–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katila, N., Bhurtel, S., Park, P.-H., Hong, J. T., & Choi, D.-Y. (2020). Activation of AMPK/APKCΖ/CREB pathway by metformin is associated with upregulation of GDNF and dopamine. Biochemical Pharmacology, 180, 114193.

    Article  CAS  PubMed  Google Scholar 

  32. Khodabakhsh, P., Pournajaf, S., MohagheghShalmani, L., Ahmadiani, A., & Dargahi, L. (2021). Insulin promotes schwann-like cell differentiation of rat epidermal neural crest stem cells. Molecular Neurobiology, 58, 5327–5337.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J., Lo, L., Dormand, E., & Anderson, D. J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron, 38(1), 17–31.

    Article  CAS  PubMed  Google Scholar 

  34. Lalau, J. D., Kajbaf, F., Bennis, Y., Hurtel-Lemaire, A. S., Belpaire, F., & De Broe, M. E. (2018). Metformin treatment in patients with type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care, 41(3), 547–553. https://doi.org/10.2337/dc17-2231

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y., Yao, D., Zhang, J., Liu, B., Zhang, L., Feng, H., & Li, B. (2017). The effects of epidermal neural crest stem cells on local inflammation microenvironment in the defected sciatic nerve of rats. Frontiers in Molecular Neuroscience, 10, 133.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lim, J. Y., Park, S. I., Oh, J. H., Kim, S. M., Jeong, C. H., Jun, J. A., Lee, K. S., Oh, W., Lee, J. K., & Jeun, S. S. (2008). Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. Journal of Neuroscience Research, 86(10), 2168–2178.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, F., Xuan, A., Chen, Y., Zhang, J., Xu, L., Yan, Q., & Long, D. (2014). Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Molecular Medicine Reports, 10(4), 1739–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

  39. Ma, J., Liu, J., Yu, H., Chen, Y., Wang, Q., & Xiang, L. (2015). Effect of metformin on schwann cells under hypoxia condition. International Journal of Clinical and Experimental Pathology, 8(6), 6748.

    PubMed  PubMed Central  Google Scholar 

  40. Marsh, S. E., & Blurton-Jones, M. (2017). Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochemistry International, 106, 94–100. https://doi.org/10.1016/j.neuint.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. MohagheghShalmani, L., Valian, N., Pournajaf, S., Abbaszadeh, F., Dargahi, L., & Jorjani, M. (2020). Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury. Mitochondrion, 52, 125–134. https://doi.org/10.1016/j.mito.2020.03.002

    Article  CAS  Google Scholar 

  42. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1–2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  43. Narytnyk, A., Verdon, B., Loughney, A., Sweeney, M., Clewes, O., Taggart, M. J., & Sieber-Blum, M. (2014). Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem cell reviews and reports, 10, 316–326.

    Article  CAS  PubMed  Google Scholar 

  44. Neirinckx, V., Coste, C., Rogister, B., & Wislet-Gendebien, S. (2013). Concise review: Adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: A state of play. Stem Cells Translational Medicine, 2(4), 284–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ould-Brahim, F., Sarma, S. N., Syal, C., Lu, K. J., Seegobin, M., Carter, A., Jeffers, M. S., Doré, C., Stanford, W. L., Corbett, D. J. S. C., & development. (2018). Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. 27(16), 1085–1096.

  46. Pajtler, K., Bohrer, A., Maurer, J., Schorle, H., Schramm, A., Eggert, A., & Schulte, J. H. (2010). Production of chick embryo extract for the cultivation of murine neural crest stem cells. Journal of Visualized Experiments, (45). https://doi.org/10.3791/2380

  47. Pournajaf, S., Valian, N., MohagheghShalmani, L., Khodabakhsh, P., Jorjani, M., & Dargahi, L. (2020). Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. European Journal of Pharmacology, 885, 173502. https://doi.org/10.1016/j.ejphar.2020.173502

    Article  CAS  PubMed  Google Scholar 

  48. Präbst, K., Engelhardt, H., Ringgeler, S., & Hübner, H. (2017). Basic colorimetric proliferation assays: MTT, WST, and resazurin. Cell viability assays: methods and protocols, 1–17.

  49. Ren, K. (1999). An improved method for assessing mechanical allodynia in the rat. Physiology & Behavior, 67(5), 711–716.

    Article  CAS  Google Scholar 

  50. Ronaghi, M., Erceg, S., Moreno-Manzano, V., & Stojkovic, M. (2010). Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells, 28(1), 93–99. https://doi.org/10.1002/stem.253

    Article  PubMed  Google Scholar 

  51. Sakaue, M., & Sieber-Blum, M. (2015). Human epidermal neural crest stem cells as a source of Schwann cells. Development, 142(18), 3188–3197.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Salehi, M. S., Pandamooz, S., Safari, A., Jurek, B., Tamadon, A., Namavar, M. R., & Borhani-Haghighi, A. (2020). Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neuroscience & Therapeutics, 26(7), 670–681.

    Article  CAS  Google Scholar 

  53. Sieber-Blum, M., & Hu, Y. (2008). Epidermal neural crest stem cells (EPI-NCSC) and pluripotency. Stem Cell Reviews, 4, 256–260.

    Article  PubMed  Google Scholar 

  54. Sieber-Blum, M., Schnell, L., Grim, M., Hu, Y. F., Schneider, R., & Schwab, M. E. (2006). Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Molecular and Cellular Neuroscience, 32(1–2), 67–81. https://doi.org/10.1016/j.mcn.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  55. Stevenson, R., Samokhina, E., Rossetti, I., Morley, J. W., & Buskila, Y. (2020). Neuromodulation of glial function during neurodegeneration. Frontiers in Cellular Neuroscience, 14, 278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, J., Gallagher, D., DeVito, L. M., Cancino, G. I., Tsui, D., He, L., Keller, G. M., Frankland, P. W., Kaplan, D. R., & Miller, F. D. (2012). Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell, 11(1), 23–35.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, L. L., Janes, M. E., Kumbhojkar, N., Kapate, N., Clegg, J. R., Prakash, S., Heavey, M. K., Zhao, Z., Anselmo, A. C., & Mitragotri, S. (2021). Cell therapies in the clinic. Bioengineering & Translational Medicine, 6(2), e10214. https://doi.org/10.1002/btm2.10214

    Article  Google Scholar 

  58. Zhang, L., Li, B., Liu, B., & Dong, Z. (2019). Co-transplantation of epidermal neural crest stem cells and olfactory ensheathing cells repairs sciatic nerve defects in rats. Frontiers in Cellular Neuroscience, 13, 253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, P., Bu, J., Wu, X., Deng, L., Chi, M., Ma, C., Shi, X., & Wang, G. (2020). Upregulation of μ-opioid receptor in the rat spinal cord contributes to the α2-adrenoceptor agonist dexmedetomidine-induced attenuation of chronic morphine tolerance in cancer pain. Journal of Pain Research, 13, 2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the dedicated staff of the Neuroscience Research Center at Shahid Beheshti University of Medical Sciences for their invaluable technical support. Special appreciation is extended to Dr. Farzin Kamari from the Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany, for his significant contributions, which enhanced both the visual and scientific aspects of this manuscript. The graphical abstract was produced using the tools provided by Biorender.com.

Funding

This study was funded by Research Affairs of Shahid Beheshti University of Medical Sciences, Tehran, Iran (grant No. 26873).

Author information

Authors and Affiliations

Authors

Contributions

Pariya Khodabakhsh and Afsaneh Asgari Taei: Investigation, Formal analysis, Writing – original draft, Writing – review & editing. Hamed Shafaroodi: Conceptualization, Supervision, Resources. Safura Pournajaf: Investigation, Writing – original draft, Writing – review & editing. Leila Dargahi: Conceptualization, Methodology, Supervision, Resources, Funding acquisition, Writing – review & editing. All authors have approved the manuscript.

Corresponding author

Correspondence to Leila Dargahi.

Ethics declarations

Conflicts of Interest

None.

Ethical Approval

All animal experiments were performed in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80–23, revised, 1996) and were approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.PHNS.REC.1399.164).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pariya Khodabakhsh, Afsaneh Asgari Taei these authors contributed equally to this work and should be considered joint first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhsh, P., Asgari Taei, A., Shafaroodi, H. et al. Effect of Metformin on Epidermal Neural Crest Stem Cells and Their Potential Application in Ameliorating Paclitaxel-induced Neurotoxicity Phenotype. Stem Cell Rev and Rep 20, 394–412 (2024). https://doi.org/10.1007/s12015-023-10642-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10642-x

Keywords

Navigation