Skip to main content
Log in

Time-resolved Small-RNA Sequencing Identifies MicroRNAs Critical for Formation of Embryonic Stem Cells from the Inner Cell Mass of Mouse Embryos

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cells of the inner cell mass (ICM) acquire a unique ability for unlimited self-renewal during transition into embryonic stem cells (ESCs) in vitro, while preserving their natural multi-lineage differentiation potential. Several different pathways have been identified to play roles in ESC formation but the function of non-coding RNAs in this process is poorly understood. Here, we describe several microRNAs (miRNAs) that are crucial for efficient generation of mouse ESCs from ICMs. Using small-RNA sequencing, we characterize dynamic changes in miRNA expression profiles during outgrowth of ICMs in a high-resolution, time-course dependent manner. We report several waves of miRNA transcription during ESC formation, to which miRNAs from the imprinted Dlk1-Dio3 locus contribute extensively. In silico analyses followed by functional investigations reveal that Dlk1-Dio3 locus-embedded miRNAs (miR-541-5p, miR-410-3p, and miR-381-3p), miR-183-5p, and miR-302b-3p promote, while miR-212-5p and let-7d-3p inhibit ESC formation. Collectively, these findings offer new mechanistic insights into the role of miRNAs during ESC derivation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Small RNA sequencing data have been deposited in the Gene Expression Omnibus [46] database under GSE205361 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205361]. All the other data supporting the findings of the present study are available in the article and its supplementary files, and from the lead contact (Hossein Baharvand: h.baharvand@royan-rc.ac.ir) upon request.

References

  1. Choi, J., Huebner, A. J., Clement, K., Walsh, R. M., Savol, A., Lin, K., Gu, H., Di Stefano, B., Brumbaugh, J., Kim, S. Y., Sharif, J., Rose, C. M., Mohammad, A., Odajima, J., Charron, J., Shioda, T., Gnirke, A., Gygi, S., Koseki, H., Sadreyev, R. I., Xiao, A., Meissner, A., & Hochedlinger, K. (2017). Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 548(7666), 219–223. https://doi.org/10.1038/nature23274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Czechanski, A., Byers, C., Greenstein, I., Schrode, N., Donahue, L. R., Hadjantonakis, A. K., & Reinholdt, L. G. (2014). Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature protocols, 9(3), 559–574. https://doi.org/10.1038/nprot.2014.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Oosten, A. L., Costa, Y., Smith, A., & Silva, J. C. (2012). JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nature communications, 3, 817. https://doi.org/10.1038/ncomms1822

    Article  CAS  PubMed  Google Scholar 

  4. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., & Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassani, S. N., Moradi, S., Taleahmad, S., Braun, T., & Baharvand, H. (2019). Transition of inner cell mass to embryonic stem cells: Mechanisms, facts, and hypotheses. Cellular and molecular life sciences: CMLS, 76(5), 873–892. https://doi.org/10.1007/s00018-018-2965-y

    Article  CAS  PubMed  Google Scholar 

  6. Hassani, S. N., Totonchi, M., Sharifi-Zarchi, A., Mollamohammadi, S., Pakzad, M., Moradi, S., Samadian, A., Masoudi, N., Mirshahvaladi, S., Farrokhi, A., Greber, B., Arauzo-Bravo, M. J., Sabour, D., Sadeghi, M., Salekdeh, G. H., Gourabi, H., Scholer, H. R., & Baharvand, H. (2014). Inhibition of TGFbeta signaling promotes ground state pluripotency. Stem cell reviews, 10(1), 16–30. https://doi.org/10.1007/s12015-013-9473-0

    Article  CAS  Google Scholar 

  7. Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A. F., Smith, A., & Stunnenberg, H. G. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3), 590–604. https://doi.org/10.1016/j.cell.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hackett, J. A., & Surani, M. A. (2014). Regulatory principles of pluripotency: From the ground state up. Cell Stem Cell, 15(4), 416–430. https://doi.org/10.1016/j.stem.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  9. Moradi, S., Sharifi-Zarchi, A., Ahmadi, A., Mollamohammadi, S., Stubenvoll, A., Gunther, S., Salekdeh, G. H., Asgari, S., Braun, T., & Baharvand, H. (2017). Small RNA sequencing reveals Dlk1-Dio3 locus-embedded MicroRNAs as Major Drivers of Ground-State Pluripotency. Stem cell reports, 9(6), 2081–2096. https://doi.org/10.1016/j.stemcr.2017.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan, Y., Yang, X., Li, T. T., Gu, K. L., Hao, J., Zhang, Q., & Wang, Y. (2017). Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. Journal of Genetics and Genomics, 44(4), 179–189. https://doi.org/10.1016/j.jgg.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  11. Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., & Surani, M. A. (2010). Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell stem cell, 6(5), 468–478. https://doi.org/10.1016/j.stem.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Totonchi, M., Hassani, S. N., Sharifi-Zarchi, A., Tapia, N., Adachi, K., Arand, J., Greber, B., Sabour, D., Arauzo-Bravo, M. J., Walter, J., Pakzad, M., Gourabi, H., Scholer, H. R., & Baharvand, H. (2017). Blockage of the epithelial-to-mesenchymal transition is required for embryonic stem cell derivation. Stem cell reports, 9(4), 1275–1290. https://doi.org/10.1016/j.stemcr.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, N., Long, B., Han, W., Yuan, S., & Wang, K. (2017). microRNAs: Important regulators of stem cells. Stem cell research & therapy, 8(1), 110. https://doi.org/10.1186/s13287-017-0551-0

    Article  CAS  Google Scholar 

  14. Gross, N., Kropp, J., & Khatib, H. (2017). MicroRNA signaling in embryo development. Biology, 6(3), https://doi.org/10.3390/biology6030034

  15. Moradi, S., Asgari, S., & Baharvand, H. (2014). Concise review: Harmonies played by microRNAs in cell fate reprogramming. Stem cells, 32(1), 3–15. https://doi.org/10.1002/stem.1576

    Article  CAS  PubMed  Google Scholar 

  16. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A. A., Elledge, S. J., Anderson, K. V., & Hannon, G. J. (2003). Dicer is essential for mouse development. Nature genetics, 35(3), 215–217. https://doi.org/10.1038/ng1253

    Article  CAS  PubMed  Google Scholar 

  17. Solter, D., & Knowles, B. B. (1975). Immunosurgery of mouse blastocyst. Proceedings of the National Academy of Sciences of the United States of America, 72(12), 5099–5102. https://doi.org/10.1073/pnas.72.12.5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., & Yamanaka, S. (2003). The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5), 631–642.

    Article  CAS  PubMed  Google Scholar 

  19. Ohnishi, Y., Totoki, Y., Toyoda, A., Watanabe, T., Yamamoto, Y., Tokunaga, K., Sakaki, Y., Sasaki, H., & Hohjoh, H. (2010). Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic acids research, 38(15), 5141–5151. https://doi.org/10.1093/nar/gkq229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuenne, C., Preussner, J., Herzog, M., Braun, T., & Looso, M. (2014). MIRPIPE: Quantification of microRNAs in niche model organisms. Bioinformatics, 30(23), 3412–3413. https://doi.org/10.1093/bioinformatics/btu573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fagnocchi, L., Cherubini, A., Hatsuda, H., Fasciani, A., Mazzoleni, S., Poli, V., Berno, V., Rossi, R. L., Reinbold, R., Endele, M., Schroeder, T., Rocchigiani, M., Szkarlat, Z., Oliviero, S., Dalton, S., & Zippo, A. (2016). A myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nature communications, 7, 11903. https://doi.org/10.1038/ncomms11903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, G., Ye, S., Zhou, X., Liu, D., & Ying, Q. L. (2015). Molecular basis of embryonic stem cell self-renewal: From signaling pathways to pluripotency network. Cellular and molecular life sciences: CMLS, 72(9), 1741–1757. https://doi.org/10.1007/s00018-015-1833-2

    Article  CAS  PubMed  Google Scholar 

  23. Chen, H., Guo, R., Zhang, Q., Guo, H., Yang, M., Wu, Z., Gao, S., Liu, L., & Chen, L. (2015). Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 112(44), E5936–5943. https://doi.org/10.1073/pnas.1516319112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature biotechnology, 27(5), 459–461. https://doi.org/10.1038/nbt.1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature genetics, 40(12), 1478–1483. https://doi.org/10.1038/ng.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houbaviy, H. B., Murray, M. F., & Sharp, P. A. (2003). Embryonic stem cell-specific MicroRNAs. Developmental cell, 5(2), 351–358. https://doi.org/10.1016/s1534-5807(03)00227-2

    Article  CAS  PubMed  Google Scholar 

  27. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A. L., Linsley, P. S., Chen, C., Lowe, S. W., Cleary, M. A., & Hannon, G. J. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134. https://doi.org/10.1038/nature05939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, Y. J., Lin, C. P., Ho, J. J., He, X., Okada, N., Bu, P., Zhong, Y., Kim, S. Y., Bennett, M. J., Chen, C., Ozturk, A., Hicks, G. G., Hannon, G. J., & He, L. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature cell biology, 13(11), 1353–1360. https://doi.org/10.1038/ncb2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, L., Luo, G. Z., Yang, W., Zhao, X., Zheng, Q., Lv, Z., Li, W., Wu, H. J., Wang, L., Wang, X. J., & Zhou, Q. (2010). Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. The Journal of biological chemistry, 285(25), 19483–19490. https://doi.org/10.1074/jbc.M110.131995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., & Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465(7295), 175–181. https://doi.org/10.1038/nature09017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benetatos, L., Vartholomatos, G., & Hatzimichael, E. (2014). DLK1-DIO3 imprinted cluster in induced pluripotency: Landscape in the mist. Cellular and molecular life sciences: CMLS, 71(22), 4421–4430. https://doi.org/10.1007/s00018-014-1698-9

    Article  CAS  PubMed  Google Scholar 

  32. Abdelalim, E. M., & Tooyama, I. (2012). The p53 inhibitor, pifithrin-alpha, suppresses self-renewal of embryonic stem cells. Biochemical and biophysical research communications, 420(3), 605–610. https://doi.org/10.1016/j.bbrc.2012.03.041

    Article  CAS  PubMed  Google Scholar 

  33. Brosh, R., Assia-Alroy, Y., Molchadsky, A., Bornstein, C., Dekel, E., Madar, S., Shetzer, Y., Rivlin, N., Goldfinger, N., Sarig, R., & Rotter, V. (2013). p53 counteracts reprogramming by inhibiting mesenchymal-to-epithelial transition. Cell death and differentiation, 20(2), 312–320. https://doi.org/10.1038/cdd.2012.125

    Article  CAS  PubMed  Google Scholar 

  34. Jain, A. K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R. J., Zwaka, T. P., Kyba, M., & Barton, M. C. (2012). p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS biology, 10(2), e1001268. https://doi.org/10.1371/journal.pbio.1001268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hassani, S. N., Totonchi, M., Farrokhi, A., Taei, A., Larijani, M. R., Gourabi, H., & Baharvand, H. (2012). Simultaneous suppression of TGF-beta and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem cell reviews, 8(2), 472–481. https://doi.org/10.1007/s12015-011-9306-y

    Article  CAS  Google Scholar 

  36. Hassani, S. N., Totonchi, M., Sharifi-Zarchi, A., Mollamohammadi, S., Pakzad, M., Moradi, S., Samadian, A., Masoudi, N., Mirshahvaladi, S., Farrokhi, A., Greber, B., Arauzo-Bravo, M. J., Sabour, D., Sadeghi, M., Salekdeh, G. H., Gourabi, H., Scholer, H. R., & Baharvand, H. (2013). Inhibition of TGFbeta Signaling promotes Ground State Pluripotency. Stem cell reviews. https://doi.org/10.1007/s12015-013-9473-0

  37. Frum, T., Murphy, T. M., & Ralston, A. (2018). HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. Elife, 7, https://doi.org/10.7554/eLife.42298

  38. Sun, X., Ren, Z., Cun, Y., Zhao, C., Huang, X., Zhou, J., Hu, R., Su, X., Ji, L., Li, P., Mak, K. L. K., Gao, F., Yang, Y., Xu, H., Ding, J., Cao, N., Li, S., Zhang, W., Lan, P., Sun, H., Wang, J., & Yuan, P. (2020). Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic acids research, 48(13), 7182–7196. https://doi.org/10.1093/nar/gkaa482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfaff, N., Liebhaber, S., Mobus, S., Beh-Pajooh, A., Fiedler, J., Pfanne, A., Schambach, A., Thum, T., Cantz, T., & Moritz, T. (2017). Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem cell research, 20, 70–75. https://doi.org/10.1016/j.scr.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Yu, B., Zhou, S., Wang, Y., Qian, T., Ding, G., Ding, F., & Gu, X. (2012). miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. Journal of cell science, 125(Pt 11), 2675–2683. https://doi.org/10.1242/jcs.098996

    Article  CAS  PubMed  Google Scholar 

  41. Schee, K., Lorenz, S., Worren, M. M., Gunther, C. C., Holden, M., Hovig, E., Fodstad, O., Meza-Zepeda, L. A., & Flatmark, K. (2013). Deep sequencing the MicroRNA Transcriptome in Colorectal Cancer. PloS one, 8(6), e66165. https://doi.org/10.1371/journal.pone.0066165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clancy, J. L., Patel, H. R., Hussein, S. M., Tonge, P. D., Cloonan, N., Corso, A. J., Li, M., Lee, D. S., Shin, J. Y., Wong, J. J., Bailey, C. G., Benevento, M., Munoz, J., Chuah, A., Wood, D., Rasko, J. E., Heck, A. J., Grimmond, S. M., Rogers, I. M., Seo, J. S., Wells, C. A., Puri, M. C., Nagy, A., & Preiss, T. (2014). Small RNA changes en route to distinct cellular states of induced pluripotency. Nature communications, 5, 5522. https://doi.org/10.1038/ncomms6522

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Melton, C., Li, Y. P., Shenoy, A., Zhang, X. X., Subramanyam, D., & Blelloch, R. (2013). miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell reports, 4(1), 99–109. https://doi.org/10.1016/j.celrep.2013.05.027

    Article  CAS  PubMed  Google Scholar 

  44. Silva, J., Nichols, J., Theunissen, T. W., Guo, G., van Oosten, A. L., Barrandon, O., Wray, J., Yamanaka, S., Chambers, I., & Smith, A. (2009). Nanog is the gateway to the pluripotent ground state. Cell, 138(4), 722–737. https://doi.org/10.1016/j.cell.2009.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Polo, J. M., Anderssen, E., Walsh, R. M., Schwarz, B. A., Nefzger, C. M., Lim, S. M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., Bar-Nur, O., Cheloufi, S., Stadtfeld, M., Figueroa, M. E., Robinton, D., Natesan, S., Melnick, A., Zhu, J., Ramaswamy, S., & Hochedlinger, K. (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. Cell, 151(7), 1617–1632. https://doi.org/10.1016/j.cell.2012.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Behrouz Asgari and Zahrasadat Ghasemi for assistance with harvesting blastocyst embryos. We are also grateful to other colleagues at Royan Institute as well as at Max-Planck Institute for Heart & Lung Research for discussions.

Funding

Research in H.B. lab is funded by Royan Institute, the Iranian Council of Stem Cell Research and Technology, the Iran National Science Foundation (INSF), and Iran Science Elites Federation. T.B. was supported by grants from Max-Planck Society. SM was supported by a grant from Royan Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.B. and S.M. conceived and designed the study. S.M., H.B., and T.B. designed the experiments, and analyzed and interpreted the data. S.M. performed most of the experiments and wrote the manuscript. S.G. performed small-RNA sequencing. S.S. contributed to ESC derivation and maintenance, miRNA transfection, and data analysis. H.B., S.M., and T.B. provided financial and administrative support, discussed the results, and approved the manuscript. C.K., A.S.-Z., and SM performed bioinformatics analysis of the small-RNA sequencing data and regulatory network construction. V.K. contributed to defining criteria for selecting candidate miRNAs and data analysis. P.T. and S.K. handled mice and harvested blastocyst-stage embryos. All authors reviewed and confirmed the manuscript before submission.

Corresponding authors

Correspondence to Thomas Braun or Hossein Baharvand.

Ethics declarations

Ethics Approval

Animal procedures were conducted in accordance with Animal Research Guidelines of the Iran’s Ministry of Health and Education and Ethics Committee of the Royan Institute.

Consent for Publication

All authors approved the manuscript for integrity and publication.

Conflicts of Interest

The authors declare no conflicts of interests.

Consent to Participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Guenther, S., Soori, S. et al. Time-resolved Small-RNA Sequencing Identifies MicroRNAs Critical for Formation of Embryonic Stem Cells from the Inner Cell Mass of Mouse Embryos. Stem Cell Rev and Rep 19, 2361–2377 (2023). https://doi.org/10.1007/s12015-023-10582-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10582-6

Keywords

Navigation