Skip to main content

Advertisement

Log in

Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood–brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

ADMSCs:

Adipose-derived mesenchymal stem cells

ADSCs:

Adipose-derived stem cells

AMT:

Adsorptive-mediated transcytosis

Axin2:

Axis inhibition protein 2

Aβ:

β-Amyloid

BBB:

Blood-brain barrier

BECs:

Brain endothelial cells

BMSCs:

Bone marrow mesenchymal stem cells

CCL-2:

C-C chemokine ligand 2

CCR-2:

C-C chemokine receptor type 2

CED:

Convection enhanced delivery

CMT:

Carrier-mediated transport

CNS:

Central nervous system

CPP:

Cell-penetrating peptide

CXCR4:

CXC motif chemokine receptor type 4

DALYs:

Disability-adjusted life-years

DLS:

Dynamic light scattering

ECs:

Endothelial cells

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

EVs:

Extracellular vesicles

5-FC:

5-Fluorocytosine

FDA:

US Food and Drug Administration

FUS:

Focused ultrasound

GBM:

Glioblastoma multiforme

GCV:

Ganciclovir

GSCs:

Glioma stem cells

HD:

Huntington’s disease

hiPSCs:

Human induced pluripotent stem cells

HMOX1:

Heme oxygenase-1

HSCs:

Hematopoietic stem cells

HSSP:

HMOX1-specific short peptide

HSVTK:

Herpes simplex virus thymidine kinase

HTT:

Huntingtin

iPSCs:

Induced pluripotent stem cells

ISEV:

International Society for Extracellular Vesicles

MCAO:

Middle cerebral artery occlusion

MPS:

Mononuclear phagocytic system

MRgFUS:

Magnetic resonant–guided focused ultrasound

MSCs:

Mesenchymal stem cells

MSC-EVs:

MSC-derived EVs

MT:

Mechanical thrombectomy

NFT:

Neurofibrillary tangles

NLCs:

Nanostructured lipid carriers

NPs:

Nanoparticles

NSCs:

Neural stem cells

NTA:

Nanoparticle tracking analysis

PBCA:

Poly(butylcyanoacrylate)

PD:

Parkinson’s disease

PEDF:

Pigment epithelium-derived factor

PEG:

Polyethylene glycol

PLGA:

Poly(lactic-co-glycolic acid)

PNPs:

Polymeric nanoparticles

PSCI:

Post-stroke cognitive impairment

PTX:

Paclitaxel

RMT:

Receptor-mediated transcytosis

RVG:

Rabies virus glycoprotein

SCs:

Stem cells

SEC:

Size exclusion chromatography

sEVs:

Small extracellular vesicles

siRNA:

Small interfering RNA

SPION:

Superparamagnetic iron oxide nanoparticles

TfR:

Transferrin receptor

TJ:

Tight junction

TMZ:

Temozolomide

tPAs:

Tissue plasminogen activators

yCD::UPRT:

Yeast cytosine deaminase (CD)::uracil phosphoribosyl transferase fusion gene

Zeb2:

Zinc finger E-box binding homeobox 2 protein

References

  1. Collaborators, G. B. D. N. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X

    Article  Google Scholar 

  2. Gouda, N. A., Elkamhawy, A., Cho, J. (2022). Emerging therapeutic strategies for Parkinson’s disease and future prospects: A 2021 update. Biomedicines. 10(2). https://doi.org/10.3390/biomedicines10020371

  3. Zhang, X., Zhang, X., Gao, H., et al. (2022). Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics, 12(5), 2041–2062. https://doi.org/10.7150/thno.68636

    Article  CAS  Google Scholar 

  4. Karlawish, J., & Grill, J. D. (2021). The approval of Aduhelm risks eroding public trust in Alzheimer research and the FDA. Nature Reviews. Neurology, 17(9), 523–524. https://doi.org/10.1038/s41582-021-00540-6

    Article  CAS  Google Scholar 

  5. Ghosh, D., Sehgal, K., Sodnar, B., et al. (2022). Drug repurposing for stroke intervention. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2022.03.003

    Article  Google Scholar 

  6. Dong, X. (2018). Current strategies for brain drug delivery. Theranostics, 8(6), 1481–1493. https://doi.org/10.7150/thno.21254

    Article  CAS  Google Scholar 

  7. Abbott, N. J., Patabendige, A. A., Dolman, D. E., et al. (2010). Structure and function of the blood-brain barrier. Neurobiology of Diseases, 37(1), 13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  Google Scholar 

  8. Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  Google Scholar 

  9. Eichler, A. F., Chung, E., Kodack, D. P., et al. (2011). The biology of brain metastases-translation to new therapies. Nature Reviews. Clinical Oncology, 8(6), 344–356. https://doi.org/10.1038/nrclinonc.2011.58

    Article  CAS  Google Scholar 

  10. Han, L., & Jiang, C. (2021). Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B, 11(8), 2306–2325. https://doi.org/10.1016/j.apsb.2020.11.023

    Article  CAS  Google Scholar 

  11. Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2(1), 3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  Google Scholar 

  12. Pardridge, W. M. (2007). Drug targeting to the brain. Pharmaceutical Research, 24(9), 1733–1744. https://doi.org/10.1007/s11095-007-9324-2

    Article  CAS  Google Scholar 

  13. Wang, Z., Guo, W., Kuang, X., et al. (2017). Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian Journal of Pharmaceutical Sciences, 12(6), 498–508. https://doi.org/10.1016/j.ajps.2017.05.006

    Article  Google Scholar 

  14. Shi, J., Zhang, H., Chen, Z., et al. (2017). A multi-functional nanoplatform for efficacy tumor theranostic applications. Asian Journal of Pharmaceutical Sciences, 12(3), 235–249. https://doi.org/10.1016/j.ajps.2016.12.001

    Article  Google Scholar 

  15. Li, X., Tsibouklis, J., Weng, T., et al. (2017). Nano carriers for drug transport across the blood-brain barrier. Journal of Drug Targeting, 25(1), 17–28. https://doi.org/10.1080/1061186X.2016.1184272

    Article  CAS  Google Scholar 

  16. Shahjin, F., Chand, S., & Yelamanchili, S. V. (2020). Extracellular vesicles as drug delivery vehicles to the central nervous system. Journal of Neuroimmune Pharmacology, 15(3), 443–458. https://doi.org/10.1007/s11481-019-09875-w

    Article  Google Scholar 

  17. Karamanidou, T., Tsouknidas, A. (2021) Plant-derived extracellular vesicles as therapeutic nanocarriers. International Journal of Molecular Sciences. 23(1). https://doi.org/10.3390/ijms23010191

  18. Weissman, I. L., Anderson, D. J., & Gage, F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17, 387–403. https://doi.org/10.1146/annurev.cellbio.17.1.387

    Article  CAS  Google Scholar 

  19. Okano, H., & Yamanaka, S. (2014). iPS cell technologies: Significance and applications to CNS regeneration and disease. Molecular Brain, 7, 22. https://doi.org/10.1186/1756-6606-7-22

    Article  CAS  Google Scholar 

  20. Gao, L., Xu, W., Li, T., et al. (2018). Stem cell therapy: A promising therapeutic method for intracerebral hemorrhage. Cell Transplantation, 27(12), 1809–1824. https://doi.org/10.1177/0963689718773363

    Article  Google Scholar 

  21. De Gioia, R., Biella, F., Citterio, G., et al. (2020). Neural stem cell transplantation for neurodegenerative diseases. International Journal of Molecular Sciences, 21(9), 3103. https://doi.org/10.3390/ijms21093103

    Article  CAS  Google Scholar 

  22. Calinescu, A. A., Kauss, M. C., Sultan, Z., et al. (2021). Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncology, 10(2), CNS73. https://doi.org/10.2217/cns-2020-0026

    Article  CAS  Google Scholar 

  23. Reis, C., Wilkinson, M., Reis, H., et al. (2017). A look into stem cell therapy: Exploring the options for treatment of ischemic stroke. Stem Cells International, 2017, 3267352. https://doi.org/10.1155/2017/3267352

    Article  CAS  Google Scholar 

  24. Koniusz, S., Andrzejewska, A., Muraca, M., et al. (2016). Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Frontiers in Cellular Neuroscience, 10, 109. https://doi.org/10.3389/fncel.2016.00109

    Article  CAS  Google Scholar 

  25. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63. https://doi.org/10.1016/j.stem.2009.05.003

    Article  CAS  Google Scholar 

  26. Sun, Y., Liu, G., Zhang, K., et al. (2021). Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Research & Therapy, 12(1), 561. https://doi.org/10.1186/s13287-021-02629-7

    Article  CAS  Google Scholar 

  27. Yin, L., Liu, X., Shi, Y., et al. (2020)., Therapeutic Advances of Stem Cell-Derived Extracellular Vesicles in Regenerative Medicine. Cells. 9(3). https://doi.org/10.3390/cells9030707

  28. Ullah, M., Qiao, Y., Concepcion, W., et al. (2019). Stem cell-derived extracellular vesicles: Role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Research & Therapy, 10(1), 347. https://doi.org/10.1186/s13287-019-1468-6

    Article  Google Scholar 

  29. Ogawa, K., Kato, N., & Kawakami, S. (2020). Recent strategies for targeted brain drug delivery. Chemical and Pharmaceutical Bulletin (Tokyo), 68(7), 567–582. https://doi.org/10.1248/cpb.c20-00041

    Article  CAS  Google Scholar 

  30. Tabet, A., Jensen, M. P., Parkins, C. C., et al. (2019). Designing next-generation local drug delivery vehicles for glioblastoma adjuvant chemotherapy: Lessons from the clinic. Advanced Healthcare Materials, 8(3), e1801391. https://doi.org/10.1002/adhm.201801391

    Article  CAS  Google Scholar 

  31. Alghamdi, M., Gumbleton, M., & Newland, B. (2021). Local delivery to malignant brain tumors: Potential biomaterial-based therapeutic/adjuvant strategies. Biomaterials Science, 9(18), 6037–6051. https://doi.org/10.1039/d1bm00896j

    Article  CAS  Google Scholar 

  32. Mehta, A. M., Sonabend, A. M., & Bruce, J. N. (2017). Convection-Enhanced Delivery. Neurotherapeutics, 14(2), 358–371. https://doi.org/10.1007/s13311-017-0520-4

    Article  CAS  Google Scholar 

  33. Shi, M., & Sanche, L. (2019). Convection-enhanced delivery in malignant gliomas: A review of toxicity and efficacy. Journal of Oncology, 2019, 9342796. https://doi.org/10.1155/2019/9342796

    Article  CAS  Google Scholar 

  34. Whish, S., Dziegielewska, K. M., Mollgard, K., et al. (2015). The inner CSF-brain barrier: Developmentally controlled access to the brain via intercellular junctions. Frontiers in Neuroscience, 9, 16. https://doi.org/10.3389/fnins.2015.00016

    Article  Google Scholar 

  35. Rodriguez-Nogales, C., Garbayo, E., Carmona-Abellan, M. M., et al. (2016). Brain aging and Parkinson’s disease: New therapeutic approaches using drug delivery systems. Maturitas, 84, 25–31. https://doi.org/10.1016/j.maturitas.2015.11.009

    Article  CAS  Google Scholar 

  36. Gonzalez-Carter, D., Liu, X., Tockary, T. A., et al. (2020). Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 19141–19150. https://doi.org/10.1073/pnas.2002016117

    Article  CAS  Google Scholar 

  37. Xie, J., Shen, Z., Anraku, Y., et al. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 224, 119491. https://doi.org/10.1016/j.biomaterials.2019.119491

    Article  CAS  Google Scholar 

  38. Chen, Y., & Liu, L. (2012). Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews, 64(7), 640–665. https://doi.org/10.1016/j.addr.2011.11.010

    Article  CAS  Google Scholar 

  39. Terstappen, G. C., Meyer, A. H., Bell, R. D., et al. (2021). Strategies for delivering therapeutics across the blood-brain barrier. Nature Reviews. Drug Discovery, 20(5), 362–383. https://doi.org/10.1038/s41573-021-00139-y

    Article  CAS  Google Scholar 

  40. Ndemazie, N. B., Inkoom, A., Morfaw, E. F., et al. (2021). Multi-disciplinary approach for drug and gene delivery systems to the brain. An Official Journal of the American Association of Pharmaceutical Scientists, 23(1), 11. https://doi.org/10.1208/s12249-021-02144-1

    Article  Google Scholar 

  41. Anthony, D. P., Hegde, M., Shetty, S. S., et al. (2021). Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sciences, 274, 119326. https://doi.org/10.1016/j.lfs.2021.119326

    Article  CAS  Google Scholar 

  42. Herve, F., Ghinea, N., & Scherrmann, J. M. (2008). CNS delivery via adsorptive transcytosis. American Association of Pharmaceutical Scientists Journal, 10(3), 455–472. https://doi.org/10.1208/s12248-008-9055-2

    Article  CAS  Google Scholar 

  43. Annu, A., Sartaj, Z. Q., et al. (2022). An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor. Frontiers in Bioengineering and Biotechnology, 10, 788128. https://doi.org/10.3389/fbioe.2022.788128

    Article  CAS  Google Scholar 

  44. Kang, Y. C., Son, M., Kang, S., et al. (2018). Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models. Experimental & Molecular Medicine, 50(8), 1–13. https://doi.org/10.1038/s12276-018-0124-z

    Article  CAS  Google Scholar 

  45. Batrakova, E. V., Gendelman, H. E., & Kabanov, A. V. (2011). Cell-mediated drug delivery. Expert Opinion on Drug Delivery, 8(4), 415–433. https://doi.org/10.1517/17425247.2011.559457

    Article  CAS  Google Scholar 

  46. Donega, M., Giusto, E., Cossetti, C., et al. (2014). Systemic injection of neural stem/progenitor cells in mice with chronic EAE. Journal of Visualized Experiments, (86). https://doi.org/10.3791/51154

  47. Andreou, T., Rippaus, N., Wronski, K., et al. (2020). Hematopoietic stem cell gene therapy for brain metastases using myeloid cell-specific gene promoters. Journal of the National Cancer Institute, 112(6), 617–627. https://doi.org/10.1093/jnci/djz181

    Article  CAS  Google Scholar 

  48. Poon, C., McMahon, D., & Hynynen, K. (2017). Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology, 120, 20–37. https://doi.org/10.1016/j.neuropharm.2016.02.014

    Article  CAS  Google Scholar 

  49. Wang, S., Kugelman, T., Buch, A., et al. (2017). Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Science and Reports, 7, 39955. https://doi.org/10.1038/srep39955

    Article  CAS  Google Scholar 

  50. Meng, Y., Reilly, R. M., Pezo, R. C., et al. (2021). MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Science Translational Medicine, 13(615), eabj4011. https://doi.org/10.1126/scitranslmed.abj4011

    Article  CAS  Google Scholar 

  51. Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., et al. (2018). Mechanism of intranasal drug delivery directly to the brain. Life Sciences, 195, 44–52. https://doi.org/10.1016/j.lfs.2017.12.025

    Article  CAS  Google Scholar 

  52. Crowe, T. P., & Hsu, W. H. (2022). Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics, 14(3), 629. https://doi.org/10.3390/pharmaceutics14030629

    Article  CAS  Google Scholar 

  53. Cunha, A., Gaubert, A., Latxague, L., et al. (2021). PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics, 13(7), 1042. https://doi.org/10.3390/pharmaceutics13071042

    Article  CAS  Google Scholar 

  54. Wilson, B., Samanta, M. K., Santhi, K., et al. (2008). Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Research, 1200, 159–168. https://doi.org/10.1016/j.brainres.2008.01.039

    Article  CAS  Google Scholar 

  55. Zhang, W., Mehta, A., Tong, Z., et al. (2021). Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Advanced Science (Weinh), 8(10), 2003937. https://doi.org/10.1002/advs.202003937

    Article  CAS  Google Scholar 

  56. Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506. https://doi.org/10.1007/s13346-017-0368-5

    Article  CAS  Google Scholar 

  57. Ayub, A., & Wettig, S. (2022). An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics, 14(2), 224. https://doi.org/10.3390/pharmaceutics14020224

    Article  CAS  Google Scholar 

  58. Xu, C., Nam, J., Hong, H., et al. (2019). Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano, 13(10), 12148–12161. https://doi.org/10.1021/acsnano.9b06691

    Article  CAS  Google Scholar 

  59. Huang, K. W., Hsu, F. F., Qiu, J. T., et al. (2020). Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science Advances, 6(3), eaax5032. https://doi.org/10.1126/sciadv.aax5032

    Article  CAS  Google Scholar 

  60. Gonzalez-Carter, D. A., Ong, Z. Y., McGilvery, C. M., et al. (2019). L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine, 15(1), 1–11. https://doi.org/10.1016/j.nano.2018.08.011

    Article  CAS  Google Scholar 

  61. Thomsen, L. B., Linemann, T., Pondman, K. M., et al. (2013). Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chemical Neuroscience, 4(10), 1352–1360. https://doi.org/10.1021/cn400093z

    Article  CAS  Google Scholar 

  62. Agrawal, M., Saraf, S., Saraf, S., et al. (2020). Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. Journal of Controlled Release, 321, 372–415. https://doi.org/10.1016/j.jconrel.2020.02.020

    Article  CAS  Google Scholar 

  63. Sercombe, L., Veerati, T., Moheimani, F., et al. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286. https://doi.org/10.3389/fphar.2015.00286

    Article  CAS  Google Scholar 

  64. Juhairiyah, F., & de Lange, E. C. M. (2021). Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential. American Association of Pharmaceutical Scientists Journal, 23(6), 114. https://doi.org/10.1208/s12248-021-00648-z

    Article  CAS  Google Scholar 

  65. Vieira, D. B., & Gamarra, L. F. (2016). Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. International Journal of Nanomedicine, 11, 5381–5414. https://doi.org/10.2147/IJN.S117210

    Article  CAS  Google Scholar 

  66. Kang, Y. J., Cutler, E. G., & Cho, H. (2018). Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence, 5(1), 35. https://doi.org/10.1186/s40580-018-0168-8

    Article  CAS  Google Scholar 

  67. Deatherage, B. L., & Cookson, B. T. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infection and Immunity, 80(6), 1948–1957. https://doi.org/10.1128/IAI.06014-11

    Article  CAS  Google Scholar 

  68. Robinson, D. G., Ding, Y., & Jiang, L. (2016). Unconventional protein secretion in plants: A critical assessment. Protoplasma, 253(1), 31–43. https://doi.org/10.1007/s00709-015-0887-1

    Article  CAS  Google Scholar 

  69. Schorey, J. S., Cheng, Y., Singh, P. P., et al. (2015). Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Reports, 16(1), 24–43. https://doi.org/10.15252/embr.201439363

    Article  CAS  Google Scholar 

  70. Johnstone, R. M., Adam, M., Hammond, J. R., et al. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–20.

    Article  CAS  Google Scholar 

  71. Mathieu, M., Martin-Jaular, L., Lavieu, G., et al. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. https://doi.org/10.1038/s41556-018-0250-9

    Article  CAS  Google Scholar 

  72. de Jong, O. G., Kooijmans, S. A. A., Murphy, D. E., et al. (2019). Drug delivery with extracellular vesicles: From imagination to innovation. Accounts of Chemical Research, 52(7), 1761–1770. https://doi.org/10.1021/acs.accounts.9b00109

    Article  CAS  Google Scholar 

  73. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., et al. (2005). Exosomal-like vesicles are present in human blood plasma. International Immunology, 17(7), 879–887. https://doi.org/10.1093/intimm/dxh267

    Article  CAS  Google Scholar 

  74. Aalberts, M., van Dissel-Emiliani, F. M. F., van Adrichem, N. P. H., et al. (2012) Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, Annexin A1, and GLIPR2 in humans1. Biology of Reproduction, 86(3). https://doi.org/10.1095/biolreprod.111.095760

  75. Admyre, C., Johansson, S. M., Qazi, K. R., et al. (2007). Exosomes with immune modulatory features are present in human breast milk. The Journal of Immunology, 179(3), 1969–1978. https://doi.org/10.4049/jimmunol.179.3.1969

    Article  CAS  Google Scholar 

  76. Pisitkun, T., Shen, R. F., & Knepper, M. A. (2004). Identification and proteomic profiling of exosomes in human urine. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13368–13373. https://doi.org/10.1073/pnas.0403453101

    Article  CAS  Google Scholar 

  77. Asea, A., Jean-Pierre, C., Kaur, P., et al. (2008). Heat shock protein-containing exosomes in mid-trimester amniotic fluids. Journal of Reproductive Immunology, 79(1), 12–17. https://doi.org/10.1016/j.jri.2008.06.001

    Article  CAS  Google Scholar 

  78. Ogawa, Y., Miura, Y., Harazono, A., et al. (2011). Proteomic analysis of two types of exosomes in human whole saliva. Biological &/and Pharmaceutical Bulletin, 34(1), 13–23. https://doi.org/10.1248/bpb.34.13

    Article  CAS  Google Scholar 

  79. Vella, L., Sharples, R., Lawson, V., et al. (2007). Packaging of prions into exosomes is associated with a novel pathway of PrP processing. The Journal of Pathology, 211(5), 582–590. https://doi.org/10.1002/path.2145

    Article  CAS  Google Scholar 

  80. Bortot, B., Apollonio, M., Rampazzo, E., et al. (2021). Small extracellular vesicles from malignant ascites of patients with advanced ovarian cancer provide insights into the dynamics of the extracellular matrix. Molecular Oncology, 15(12), 3596–3614. https://doi.org/10.1002/1878-0261.13110

    Article  CAS  Google Scholar 

  81. Masyuk, A. I., Huang, B. Q., Ward, C. J., et al. (2010). Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. American Journal of Physiology. Gastrointestinal and Liver Physiology, 299(4), G990–G999. https://doi.org/10.1152/ajpgi.00093.2010

    Article  CAS  Google Scholar 

  82. van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  Google Scholar 

  83. Sinauridze, E. I., Kireev, D. A., Popenko, N. Y., et al. (2007). Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thrombosis and Haemostasis, 97(03), 425–434.

    Article  CAS  Google Scholar 

  84. Xu, R., Rai, A., Chen, M., et al. (2018). Extracellular vesicles in cancer - implications for future improvements in cancer care. Nature Reviews. Clinical Oncology, 15(10), 617–638. https://doi.org/10.1038/s41571-018-0036-9

    Article  CAS  Google Scholar 

  85. Robbins, P. D., Dorronsoro, A., & Booker, C. N. (2016). Regulation of chronic inflammatory and immune processes by extracellular vesicles. The Journal of Clinical Investigation, 126(4), 1173–1180. https://doi.org/10.1172/JCI81131

    Article  Google Scholar 

  86. Becker, A., Thakur, B. K., Weiss, J. M., et al. (2016). Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30(6), 836–848. https://doi.org/10.1016/j.ccell.2016.10.009

    Article  CAS  Google Scholar 

  87. Samir, E. L. A., Mager, I., Breakefield, X. O., et al. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12(5), 347–57. https://doi.org/10.1038/nrd3978

    Article  CAS  Google Scholar 

  88. Colombo, M., Raposo, G., & Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  Google Scholar 

  89. Kalra, H., Drummen, G. P., & Mathivanan, S. (2016). Focus on extracellular vesicles: Introducing the next small big thing. International Journal of Molecular Sciences, 17(2), 170. https://doi.org/10.3390/ijms17020170

    Article  CAS  Google Scholar 

  90. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  Google Scholar 

  91. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478). https://doi.org/10.1126/science.aau6977

  92. Phan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225

    Article  CAS  Google Scholar 

  93. Thery, C., Witwer, K. W., Aikawa, E., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  Google Scholar 

  94. Ohnuki, M., & Takahashi, K. (2015). Present and future challenges of induced pluripotent stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 370(1680), 20140367. https://doi.org/10.1098/rstb.2014.0367

    Article  CAS  Google Scholar 

  95. Damdimopoulou, P., Rodin, S., Stenfelt, S., et al. (2016). Human embryonic stem cells. Best Practice & Research. Clinical Obstetrics & Gynaecology, 31, 2–12. https://doi.org/10.1016/j.bpobgyn.2015.08.010

    Article  Google Scholar 

  96. Muller, P., Lemcke, H., & David, R. (2018). Stem cell therapy in heart diseases - cell types, mechanisms and improvement strategies. Cellular Physiology and Biochemistry, 48(6), 2607–2655. https://doi.org/10.1159/000492704

    Article  CAS  Google Scholar 

  97. Biressi, S., Filareto, A., & Rando, T. A. (2020). Stem cell therapy for muscular dystrophies. The Journal of Clinical Investigation, 130(11), 5652–5664. https://doi.org/10.1172/JCI142031

    Article  CAS  Google Scholar 

  98. Pixley, J. S. (2020). Mesenchymal stem cells to treat type 1 diabetes. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866(4), 165315. https://doi.org/10.1016/j.bbadis.2018.10.033

    Article  CAS  Google Scholar 

  99. Maeda, T., Mandai, M., Sugita, S., et al. (2022). Strategies of pluripotent stem cell-based therapy for retinal degeneration: Update and challenges. Trends in Molecular Medicine, 28(5), 388–404. https://doi.org/10.1016/j.molmed.2022.03.001

    Article  CAS  Google Scholar 

  100. Cornelissen, J. J., & Blaise, D. (2016). Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood, 127(1), 62–70. https://doi.org/10.1182/blood-2015-07-604546

    Article  CAS  Google Scholar 

  101. Anurogo, D., Yuli Prasetyo Budi, N., Thi Ngo, M. H., et al. (2021). Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. International Journal of Molecular Sciences, 22(12). https://doi.org/10.3390/ijms22126275

  102. Ford, E., Pearlman, J., Ruan, T., et al. (2020) Human pluripotent stem cells-based therapies for neurodegenerative diseases: Current status and challenges. Cells, 9(11). https://doi.org/10.3390/cells9112517

  103. Kikuchi, T., Morizane, A., Doi, D., et al. (2017). Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research, 95(9), 1829–1837. https://doi.org/10.1002/jnr.24014

    Article  CAS  Google Scholar 

  104. Hargus, G., Cooper, O., Deleidi, M., et al. (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15921–15926. https://doi.org/10.1073/pnas.1010209107

    Article  Google Scholar 

  105. Rhee, Y. H., Ko, J. Y., Chang, M. Y., et al. (2011). Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. Journal of Clinical Investigation, 121(6), 2326–2335. https://doi.org/10.1172/Jci45794

    Article  CAS  Google Scholar 

  106. Kikuchi, T., Morizane, A., Doi, D., et al. (2011). Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. Journal of Parkinsons Disease, 1(4), 395–412. https://doi.org/10.3233/Jpd-2011-11070

    Article  CAS  Google Scholar 

  107. Marei, H. E., Hasan, A., Rizzi, R., et al. (2018). Potential of stem cell-based therapy for ischemic stroke. Frontiers in Neurology, 9, ARTN 34. https://doi.org/10.3389/fneur.2018.00034

    Article  Google Scholar 

  108. Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell, 27(4), 523–531. https://doi.org/10.1016/j.stem.2020.09.014

    Article  CAS  Google Scholar 

  109. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736. https://doi.org/10.1038/nri2395

    Article  CAS  Google Scholar 

  110. Huang, L., Ma, W., Ma, Y., et al. (2015). Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences, 11(2), 238–245. https://doi.org/10.7150/ijbs.10725

    Article  CAS  Google Scholar 

  111. He, J., Wang, Y., Sun, S., et al. (2012). Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton, Vic.), 17(5), 493–500. https://doi.org/10.1111/j.1440-1797.2012.01589.x

    Article  Google Scholar 

  112. Li, T., Yan, Y., Wang, B., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22(6), 845–854. https://doi.org/10.1089/scd.2012.0395

    Article  CAS  Google Scholar 

  113. Allegretta, C., D’Amico, E., Manuti, V., et al. (2022). Mesenchymal stem cell-derived extracellular vesicles and their therapeutic use in central nervous system demyelinating disorders. International Journal of Molecular Sciences, 23(7), 3829.

    Article  CAS  Google Scholar 

  114. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084. https://doi.org/10.1002/jcb.20886

    Article  CAS  Google Scholar 

  115. Rani, S., Ryan, A. E., Griffin, M. D., et al. (2015). Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Molecular Therapy, 23(5), 812–823. https://doi.org/10.1038/mt.2015.44

    Article  CAS  Google Scholar 

  116. You, B., Jin, C., Zhang, J., et al. (2022). MSC-derived extracellular vesicle-delivered L-PGDS inhibit gastric cancer progression by suppressing cancer cell stemness and STAT3 phosphorylation. Stem Cells International, 2022, 9668239. https://doi.org/10.1155/2022/9668239

    Article  CAS  Google Scholar 

  117. Harrell, C. R., Jovicic, N., Djonov, V., et al. (2019). Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells, 8(12), 1605.

    Article  CAS  Google Scholar 

  118. Lu, V., Tennyson, M., Zhang, J., et al. (2021). Mesenchymal stem cell-derived extracellular vesicles in tendon and ligament repair—A systematic review of in vivo studies. Cells, 10(10), 2553.

    Article  CAS  Google Scholar 

  119. Wiklander, O. P. B., Nordin, J. Z., O’Loughlin, A., et al. (2015). Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 4(1), 26316. https://doi.org/10.3402/jev.v4.26316

    Article  Google Scholar 

  120. Elsharkasy, O. M., Nordin, J. Z., Hagey, D. W., et al. (2020). Extracellular vesicles as drug delivery systems: Why and how? Advanced Drug Delivery Reviews, 159, 332–343. https://doi.org/10.1016/j.addr.2020.04.004

    Article  CAS  Google Scholar 

  121. Vader, P., Mol, E. A., Pasterkamp, G., et al. (2016). Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 106, 148–156. https://doi.org/10.1016/j.addr.2016.02.006

    Article  CAS  Google Scholar 

  122. Zhuang, X. Y., Xiang, X. Y., Grizzle, W., et al. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19(10), 1769–1779.

    Article  CAS  Google Scholar 

  123. Chen, C., Sun, M., Wang, J., et al. (2021). Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. Journal of Extracellular Vesicles, 10(13), e12163. https://doi.org/10.1002/jev2.12163

    Article  CAS  Google Scholar 

  124. Kim, M. S., Haney, M. J., Zhao, Y., et al. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine-Nanotechnology Biology and Medicine, 12(3), 655–664.

    Article  CAS  Google Scholar 

  125. Alvarez-Erviti, L., Seow, Y. Q., Yin, H. F., et al. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341-U179.

    Article  CAS  Google Scholar 

  126. Haney, M. J., Klyachko, N. L., Zhaoa, Y. L., et al. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18–30.

    Article  CAS  Google Scholar 

  127. Armstrong, J. P. K., Holme, M. N., & Stevens, M. M. (2017). Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 11(1), 69–83. https://doi.org/10.1021/acsnano.6b07607

    Article  CAS  Google Scholar 

  128. Corso, G., Heusermann, W., Trojer, D., et al. (2019). Systematic characterization of extracellular vesicles sorting domains and quantification at the single molecule - single vesicle level by fluorescence correlation spectroscopy and single particle imaging. Journal of Extracellular Vesicles, 8(1), Artn 1663043. https://doi.org/10.1080/20013078.2019.1663043

    Article  CAS  Google Scholar 

  129. Zickler, A. M., & Andaloussi, S. E. L. (2020). Functional extracellular vesicles aplenty. Nature Biomedical Engineering, 4(1), 9–11. https://doi.org/10.1038/s41551-019-0507-z

    Article  Google Scholar 

  130. Tian, Y. H., Li, S. P., Song, J., et al. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390.

    Article  CAS  Google Scholar 

  131. Mentkowski, K. I. & Lang, J. K. (2019). Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Scientific Reports, 9.

  132. Zhou, M., Wang, H., Zeng, X., et al. (2019). Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 394(10204), 1145–1158. https://doi.org/10.1016/s0140-6736(19)30427-1

    Article  Google Scholar 

  133. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., et al. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135(10), e146–e603. https://doi.org/10.1161/cir.0000000000000485

    Article  Google Scholar 

  134. Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience, 4(5), 399–415. https://doi.org/10.1038/nrn1106

    Article  CAS  Google Scholar 

  135. Khoshnam, S. E., Winlow, W., Farzaneh, M., et al. (2017). Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 38(7), 1167–1186. https://doi.org/10.1007/s10072-017-2938-1

    Article  Google Scholar 

  136. Li, Y., Tang, Y., & Yang, G. Y. (2021). Therapeutic application of exosomes in ischaemic stroke. Stroke and Vascular Neurology, 6(3), 483–495. https://doi.org/10.1136/svn-2020-000419

    Article  Google Scholar 

  137. Li, Y., Liu, B., Chen, Y., et al. (2021). Extracellular vesicle application as a novel therapeutic strategy for ischemic stroke. Translational Stroke Research, 13(1), 171–187. https://doi.org/10.1007/s12975-021-00915-3

    Article  Google Scholar 

  138. Xin, H., Li, Y., Cui, Y., et al. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow and Metabolism, 33(11), 1711–1715. https://doi.org/10.1038/jcbfm.2013.152

    Article  CAS  Google Scholar 

  139. Bang, O. Y., & Kim, J.-E. (2022). Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases. BMB Reports, 55(1), 20–29. https://doi.org/10.5483/BMBRep.2022.55.1.162

    Article  CAS  Google Scholar 

  140. Zhang, Z. G., & Chopp, M. (2016). Exosomes in stroke pathogenesis and therapy. The Journal of Clinical Investigation, 126(4), 1190–1197. https://doi.org/10.1172/jci81133

    Article  Google Scholar 

  141. Ai, Z., Cheng, C., Zhou, L., et al. (2021). Bone marrow mesenchymal stem cells-derived extracellular vesicles carrying microRNA-221-3p protect against ischemic stroke via ATF3. Brain Research Bulletin, 172, 220–228. https://doi.org/10.1016/j.brainresbull.2021.04.022

    Article  CAS  Google Scholar 

  142. Yang, J., Zhang, X., Chen, X., et al. (2017). Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Molecular Therapy - Nucleic Acids, 7, 278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  CAS  Google Scholar 

  143. Cheng, C., Chen, X., Wang, Y., et al. (2021). MSCsderived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Molecular Medicine, 27(1), 67. https://doi.org/10.1186/s10020-021-00324-0

    Article  CAS  Google Scholar 

  144. Cai, G., Cai, G., Zhou, H., et al. (2021). Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Research & Therapy, 12(1), 2. https://doi.org/10.1186/s13287-020-02030-w

    Article  CAS  Google Scholar 

  145. Zhao, Y., Gan, Y., Xu, G., et al. (2020). Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sciences, 260, 118403. https://doi.org/10.1016/j.lfs.2020.118403

    Article  CAS  Google Scholar 

  146. Xin, H., Liu, Z., Buller, B., et al. (2021). MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. Journal of Cerebral Blood Flow and Metabolism, 41(5), 1131–1144. https://doi.org/10.1177/0271678X20950489

    Article  CAS  Google Scholar 

  147. Pan, Q., Kuang, X., Cai, S., et al. (2020). miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Research & Therapy, 11(1), 260. https://doi.org/10.1186/s13287-020-01761-0

    Article  CAS  Google Scholar 

  148. Deng, Y., Chen, D., Gao, F., et al. (2019). Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. Journal of Biological Engineering, 13, 71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  Google Scholar 

  149. Xin, H., Katakowski, M., Wang, F., et al. (2017). MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 48(3), 747–753. https://doi.org/10.1161/STROKEAHA.116.015204

    Article  CAS  Google Scholar 

  150. Xin, H., Li, Y., Liu, Z., et al. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31(12), 2737–2746. https://doi.org/10.1002/stem.1409

    Article  CAS  Google Scholar 

  151. Xin, H., Wang, F., Li, Y., et al. (2017). Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from MicroRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplantation, 26(2), 243–257. https://doi.org/10.3727/096368916X693031

    Article  Google Scholar 

  152. Jiang, M., Wang, H., Jin, M., et al. (2018). Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 Microglial/Macrophage polarization. Cellular Physiology and Biochemistry, 47(2), 864–878. https://doi.org/10.1159/000490078

    Article  CAS  Google Scholar 

  153. Geng, W., Tang, H., Luo, S., et al. (2019). Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. American Journal of Translational Research, 11(2), 780–792.

    CAS  Google Scholar 

  154. Zhang, H., Wu, J., Wu, J., et al. (2019). Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. Journal of Nanobiotechnology, 17(1), 29. https://doi.org/10.1186/s12951-019-0461-7

    Article  Google Scholar 

  155. Wang, J., Chen, S., Zhang, W., et al. (2020). Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neuroscience & Therapeutics, 26(12), 1255–1265. https://doi.org/10.1111/cns.13455

    Article  CAS  Google Scholar 

  156. Kalani, A., Chaturvedi, P., Kamat, P. K., et al. (2016). Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. International Journal of Biochemistry & Cell Biology, 79, 360–369. https://doi.org/10.1016/j.biocel.2016.09.002

    Article  CAS  Google Scholar 

  157. Tian, T., Zhang, H. X., He, C. P., et al. (2018). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 150, 137–149. https://doi.org/10.1016/j.biomaterials.2017.10.012

    Article  CAS  Google Scholar 

  158. Liu, Y., Fu, N., Su, J., et al. (2019). Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/Caspase-3. BioMed Research International, 2019, 4273290. https://doi.org/10.1155/2019/4273290

    Article  CAS  Google Scholar 

  159. Li, X., Zhang, Y., Wang, Y., et al. (2020). Exosomes derived from CXCR4-overexpressing BMSC promoted activation of microvascular endothelial cells in cerebral ischemia/reperfusion injury. Neural Plasticity, 2020, 8814239. https://doi.org/10.1155/2020/8814239

    Article  CAS  Google Scholar 

  160. Wei, R., Zhang, L., Hu, W., et al. (2022). Zeb2/Axin2-enriched BMSC-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. Journal of Molecular Neuroscience, 72(1), 69–81. https://doi.org/10.1007/s12031-021-01887-7

    Article  CAS  Google Scholar 

  161. Huang, X., Ding, J., Li, Y., et al. (2018). Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Experimental Cell Research, 371(1), 269–277. https://doi.org/10.1016/j.yexcr.2018.08.021

    Article  CAS  Google Scholar 

  162. Yang, H. C., Zhang, M., Wu, R., et al. (2020). C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World Journal of Stem Cells, 12(2), 152–167. https://doi.org/10.4252/wjsc.v12.i2.152

    Article  Google Scholar 

  163. Liu, D. Z., Tian, Y., Ander, B. P., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow and Metabolism, 30(1), 92–101. https://doi.org/10.1038/jcbfm.2009.186

    Article  CAS  Google Scholar 

  164. Mirzaei, H., Momeni, F., Saadatpour, L., et al. (2018). MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. Journal of Cellular Physiology, 233(2), 856–865. https://doi.org/10.1002/jcp.25787

    Article  CAS  Google Scholar 

  165. Chen, H., Wang, L., Zeng, X., et al. (2021). Exosomes, a new star for targeted delivery. Frontiers in Cell and Development Biology, 9, 751079. https://doi.org/10.3389/fcell.2021.751079

    Article  Google Scholar 

  166. Yang, H. H., Chen, Y., Gao, C. Y., et al. (2017). Protective effects of MicroRNA-126 on human cardiac microvascular endothelial cells against Hypoxia/Reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cellular Physiology and Biochemistry, 42(2), 506–518. https://doi.org/10.1159/000477597

    Article  CAS  Google Scholar 

  167. Procházka, V., Jurčíková, J., Vítková, K., et al. (2018). The role of miR-126 in critical limb ischemia treatment using adipose-derived stem cell therapeutic factor concentrate and extracellular matrix microparticles. Medical Science Monitor, 24, 511–522. https://doi.org/10.12659/msm.905442

    Article  CAS  Google Scholar 

  168. Pan, Q., Zheng, J., Du, D., et al. (2018). MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem Cells International, 2018, 2912347. https://doi.org/10.1155/2018/2912347

    Article  CAS  Google Scholar 

  169. Pan, Q., Wang, Y., Lan, Q., et al. (2019). Exosomes derived from mesenchymal stem cells ameliorate Hypoxia/Reoxygenation-injured ECs via transferring MicroRNA-126. Stem Cells International, 2019, 2831756. https://doi.org/10.1155/2019/2831756

    Article  CAS  Google Scholar 

  170. Mogilyansky, E., & Rigoutsos, I. (2013). The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death and Differentiation, 20(12), 1603–1614. https://doi.org/10.1038/cdd.2013.125

    Article  CAS  Google Scholar 

  171. Geloso, M. C., Corvino, V., Marchese, E., et al. (2017). The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front Aging Neuroscience, 9, 242. https://doi.org/10.3389/fnagi.2017.00242

    Article  CAS  Google Scholar 

  172. Becerra, S. P., Sagasti, A., Spinella, P., et al. (1995). Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. The Journal of Biological Chemistry, 270(43), 25992–9. https://doi.org/10.1074/jbc.270.43.25992

    Article  CAS  Google Scholar 

  173. Kuo, H. F., Liu, P. L., Chong, I. W., et al. (2016). Pigment epithelium-derived factor mediates autophagy and apoptosis in myocardial Hypoxia/Reoxygenation injury. PLoS ONE, 11(5), e0156059. https://doi.org/10.1371/journal.pone.0156059

    Article  CAS  Google Scholar 

  174. Xu, M., Yang, Q., Sun, X., et al. (2020). Recent advancements in the loading and modification of therapeutic exosomes. Frontiers in Bioengineering and Biotechnology, 8, 586130. https://doi.org/10.3389/fbioe.2020.586130

    Article  Google Scholar 

  175. Lee, H. J., Engelhardt, B., Lesley, J., et al. (2000). Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1048–1052.

    CAS  Google Scholar 

  176. Xie, C. J., Gu, A. P., Cai, J., et al. (2018). Curcumin protects neural cells against ischemic injury in N2a cells and mouse brain with ischemic stroke. Brain and Behavior: A Cognitive Neuroscience Perspective, 8(2), e00921. https://doi.org/10.1002/brb3.921

    Article  Google Scholar 

  177. Liu, Z., Ran, Y., Huang, S., et al. (2017). Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Frontiers in Aging Neuroscience, 9, 233. https://doi.org/10.3389/fnagi.2017.00233

    Article  CAS  Google Scholar 

  178. Li, W., Suwanwela, N. C., & Patumraj, S. (2017). Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF-κB, ICAM-1, MMP-9 and caspase-3 expression. Molecular Medicine Reports, 16(4), 4710–4720. https://doi.org/10.3892/mmr.2017.7205

    Article  CAS  Google Scholar 

  179. He, R., Jiang, Y., Shi, Y., et al. (2020). Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Materials Science & Engineering, C: Materials for Biological Applications, 117, 111314. https://doi.org/10.1016/j.msec.2020.111314

    Article  CAS  Google Scholar 

  180. (2020). 2020 Alzheimer’s disease facts and figures. Alzheimer's & Dementia. https://doi.org/10.1002/alz.12068

  181. Meldolesi, J. (2019). Alzheimer’s disease: Key developments support promising perspectives for therapy. Pharmacological Research, 146, 104316. https://doi.org/10.1016/j.phrs.2019.104316

    Article  CAS  Google Scholar 

  182. Ising, C., & Heneka, M. T. (2018). Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death & Disease, 9(2), 120. https://doi.org/10.1038/s41419-017-0153-x

    Article  CAS  Google Scholar 

  183. Bagyinszky, E., Giau, V. V., Shim, K., et al. (2017). Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. Journal of the Neurological Sciences, 376, 242–254. https://doi.org/10.1016/j.jns.2017.03.031

    Article  CAS  Google Scholar 

  184. Guo, M., Yin, Z., Chen, F., et al. (2020). Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease. Alzheimer’s Research & Therapy, 12(1), 109. https://doi.org/10.1186/s13195-020-00670-x

    Article  Google Scholar 

  185. Chen, Y. A., Lu, C. H., Ke, C. C., et al. (2021). Mesenchymal stem cell-derived extracellular vesicle-based therapy for Alzheimer’s disease: Progress and opportunity. Membranes (Basel), 11(10), 796. https://doi.org/10.3390/membranes11100796

    Article  CAS  Google Scholar 

  186. Jahangard, Y., Monfared, H., Moradi, A., et al. (2020). Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer’s disease. Frontiers in Neuroscience, 14, 564. https://doi.org/10.3389/fnins.2020.00564

    Article  Google Scholar 

  187. Zhai, L., Shen, H., Sheng, Y., et al. (2021). ADMSC Exo-MicroRNA-22 improve neurological function and neuroinflammation in mice with Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 25(15), 7513–7523. https://doi.org/10.1111/jcmm.16787

    Article  CAS  Google Scholar 

  188. Izadpanah, M., Dargahi, L., Ai, J., et al. (2020). Extracellular vesicles as a neprilysin delivery system memory improvement in Alzheimer’s disease. Iran Journal of Pharmacy Research, 19(2), 45–60. https://doi.org/10.22037/ijpr.2020.112062.13508

    Article  CAS  Google Scholar 

  189. Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet, 386(9996), 896–912. https://doi.org/10.1016/s0140-6736(14)61393-3

    Article  CAS  Google Scholar 

  190. Pan, T., Kondo, S., Le, W., et al. (2008). The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain, 131(Pt 8), 1969–1978. https://doi.org/10.1093/brain/awm318

    Article  Google Scholar 

  191. López González, I., Garcia-Esparcia, P., Llorens, F., et al. (2016). Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. International Journal of Molecular Sciences, 17(2), 206. https://doi.org/10.3390/ijms17020206

    Article  CAS  Google Scholar 

  192. Bai, X., Dong, Q., Zhao, L., et al. (2021). microRNA-106b-containing extracellular vesicles affect autophagy of neurons by regulating CDKN2B in Parkinson’s disease. Neuroscience Letters, 760, 136094. https://doi.org/10.1016/j.neulet.2021.136094

    Article  CAS  Google Scholar 

  193. Li, Q., Wang, Z., Xing, H., et al. (2021). Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Molecular Therapy--Nucleic Acids, 23, 1334–1344. https://doi.org/10.1016/j.omtn.2021.01.022

    Article  CAS  Google Scholar 

  194. Peng, H., Li, Y., Ji, W., et al. (2022). Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano. https://doi.org/10.1021/acsnano.1c08473

    Article  Google Scholar 

  195. Joshi, B. S., Youssef, S. A., Bron, R., et al. (2021). DNAJB6b-enriched small extracellular vesicles decrease polyglutamine aggregation in in vitro and in vivo models of Huntington disease. iScience, 24(11), 103282. https://doi.org/10.1016/j.isci.2021.103282

    Article  CAS  Google Scholar 

  196. Vigneswaran, K., Neill, S., & Hadjipanayis, C. G. (2015). Beyond the World Health Organization grading of infiltrating gliomas: Advances in the molecular genetics of glioma classification. Annals of Translational Medicine, 3(7), 95. https://doi.org/10.3978/j.issn.2305-5839.2015.03.57

    Article  Google Scholar 

  197. Ostrom, Q. T., Patil, N., Cioffi, G., et al. (2020). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncology, 22(12 Suppl 2), iv1–iv96. https://doi.org/10.1093/neuonc/noaa200

    Article  Google Scholar 

  198. Hervey-Jumper, S. L., & Berger, M. S. (2016). Maximizing safe resection of low- and high-grade glioma. Journal of Neuro-oncology, 130(2), 269–282. https://doi.org/10.1007/s11060-016-2110-4

    Article  Google Scholar 

  199. Do, A. D., Kurniawati, I., Hsieh, C. L., et al. (2021). Application of mesenchymal stem cells in targeted delivery to the brain: Potential and challenges of the extracellular vesicle-based approach for brain tumor treatment. International Journal of Molecular Sciences, 22(20), 11187. https://doi.org/10.3390/ijms222011187

    Article  CAS  Google Scholar 

  200. Kim, R., Lee, S., Lee, J., et al. (2018). Exosomes derived from microRNA-584 transfected mesenchymal stem cells: Novel alternative therapeutic vehicles for cancer therapy. BMB Reports, 51(8), 406–411. https://doi.org/10.5483/bmbrep.2018.51.8.105

    Article  CAS  Google Scholar 

  201. Liu, L., Cheng, M., Zhang, T., et al. (2022). Mesenchymal stem cell-derived extracellular vesicles prevent glioma by blocking M2 polarization of macrophages through a miR-744-5p/TGFB1-dependent mechanism. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-021-09652-7

    Article  Google Scholar 

  202. Zhang, Z., Guo, X., Guo, X., et al. (2021). MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging (Albany NY), 13(4), 5055–5068. https://doi.org/10.18632/aging.202424

    Article  CAS  Google Scholar 

  203. Katakowski, M., Buller, B., Zheng, X., et al. (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335(1), 201–204. https://doi.org/10.1016/j.canlet.2013.02.019

    Article  CAS  Google Scholar 

  204. Lang, F. M., Hossain, A., Gumin, J., et al. (2018). Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-Oncology, 20(3), 380–390. https://doi.org/10.1093/neuonc/nox152

    Article  CAS  Google Scholar 

  205. Yan, T., Wu, M., Lv, S., et al. (2021). Exosomes derived from microRNA-512-5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1. Aging (Albany NY), 13(7), 9911–9926. https://doi.org/10.18632/aging.202747

    Article  CAS  Google Scholar 

  206. Wang, K., Kumar, U. S., Sadeghipour, N., et al. (2021). A microfluidics-based scalable approach to generate extracellular vesicles with enhanced therapeutic MicroRNA loading for intranasal delivery to mouse glioblastomas. ACS Nano. https://doi.org/10.1021/acsnano.1c07587

    Article  Google Scholar 

  207. Rehman, F. U., Liu, Y., Yang, Q., et al. (2022). Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy. Journal of Controlled Release, 345, 696–708. https://doi.org/10.1016/j.jconrel.2022.03.036

    Article  CAS  Google Scholar 

  208. Tibensky, M., Jakubechova, J., Altanerova, U., et al. (2022). Gene-directed enzyme/prodrug therapy of rat brain tumor mediated by human mesenchymal stem cell suicide gene extracellular vesicles in vitro and in vivo. Cancers (Basel), 14(3), 735. https://doi.org/10.3390/cancers14030735

    Article  CAS  Google Scholar 

  209. Zhu, Q., Ling, X., Yang, Y., et al. (2019). Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Advance Science (Weinh), 6(6), 1801899. https://doi.org/10.1002/advs.201801899

    Article  CAS  Google Scholar 

  210. Kong, Y. W., Ferland-McCollough, D., Jackson, T. J., et al. (2012). microRNAs in cancer management. The lancet Oncology, 13(6), e249–e258. https://doi.org/10.1016/s1470-2045(12)70073-6

    Article  CAS  Google Scholar 

  211. Yu, L., Gui, S., Liu, Y., et al. (2019). Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY), 11(15), 5300–5318. https://doi.org/10.18632/aging.102092

    Article  CAS  Google Scholar 

  212. Altaner, C. (2008). Prodrug cancer gene therapy. Cancer Letters, 270(2), 191–201. https://doi.org/10.1016/j.canlet.2008.04.023

    Article  CAS  Google Scholar 

  213. Pastorakova, A., Jakubechova, J., Altanerova, U., et al. (2020). Suicide gene therapy mediated with exosomes produced by mesenchymal stem/stromal cells stably transduced with HSV thymidine kinase. Cancers (Basel), 12(5), 1096. https://doi.org/10.3390/cancers12051096

    Article  CAS  Google Scholar 

  214. Webber, J., & Clayton, A. (2013). How pure are your vesicles? Journal of Extracellular Vesicles, 2(1), 19861. https://doi.org/10.3402/jev.v2i0.19861

    Article  Google Scholar 

  215. Lozano-Ramos, I., Bancu, I., Oliveira-Tercero, A., et al. (2015). Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. Journal of Extracellular Vesicles, 4, 27369. https://doi.org/10.3402/jev.v4.27369

    Article  Google Scholar 

  216. Merchant, M. L., Powell, D. W., Wilkey, D. W., et al. (2010). Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics. Clinical Applications, 4(1), 84–96. https://doi.org/10.1002/prca.200800093

    Article  CAS  Google Scholar 

  217. Helwa, I., Cai, J. W., Drewry, M. D., et al. (2017). A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. Plos One, 12(1), e0170628. https://doi.org/10.1371/journal.pone.01706285

    Article  Google Scholar 

  218. Iwai, K., Minamisawa, T., Suga, K., et al. (2016). Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. Journal of Extracellular Vesicles, 5, 30829. https://doi.org/10.3402/jev.v5.30829

    Article  CAS  Google Scholar 

  219. Li, P., Kaslan, M., Lee, S. H., et al. (2017). Progress in exosome isolation techniques. Theranostics, 7(3), 789–804. https://doi.org/10.7150/thno.18133

    Article  CAS  Google Scholar 

  220. Amarnath, S., Foley, J. E., Farthing, D. E., et al. (2015). Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells, 33(4), 1200–1212. https://doi.org/10.1002/stem.1934

    Article  CAS  Google Scholar 

  221. Witwer, K. W., Buzas, E. I., Bemis, L. T., et al. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles, 2,. https://doi.org/10.3402/jev.v2i0.20360

  222. Gheinani, A. H., Vogeli, M., Baumgartner, U., et al. (2018). Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Science and Reports, 8(1), 3945. https://doi.org/10.1038/s41598-018-22142-x

    Article  CAS  Google Scholar 

  223. Linares, R., Tan, S., Gounou, C., et al. (2017). Imaging and quantification of extracellular vesicles by transmission electron microscopy. Methods in Molecular Biology, 1545, 43–54. https://doi.org/10.1007/978-1-4939-6728-5_4

    Article  CAS  Google Scholar 

  224. Noble, J. M., Roberts, L. M., Vidavsky, N., et al. (2020). Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. Journal of Structural Biology, 210(1), 107474. https://doi.org/10.1016/j.jsb.2020.107474

    Article  CAS  Google Scholar 

  225. Hoog, J. L., & Lotvall, J. (2015). Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. Journal of Extracellular Vesicles, 4, 28680. https://doi.org/10.3402/jev.v4.28680

    Article  CAS  Google Scholar 

  226. Rikkert, L. G., Nieuwland, R., Terstappen, L. W. M. M., et al. (2019). Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles, 8(1), 1555419. https://doi.org/10.1080/20013078.2018.1555419

    Article  CAS  Google Scholar 

  227. Bachurski, D., Schuldner, M., Nguyen, P. H., et al. (2019). Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. Journal of Extracellular Vesicles, 8(1), 1596016. https://doi.org/10.1080/20013078.2019.1596016

    Article  CAS  Google Scholar 

  228. Arab, T., Mallick, E. R., Huang, Y., et al. (2021). Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. Journal of Extracellular Vesicles, 10(6), e12079. https://doi.org/10.1002/jev2.12079

    Article  CAS  Google Scholar 

  229. Kowal, E. J. K., Ter-Ovanesyan, D., Regev, A., et al. (2017). Extracellular vesicle isolation and analysis by western blotting. Methods in Molecular Biology, 1660, 143–152. https://doi.org/10.1007/978-1-4939-7253-1_12

    Article  CAS  Google Scholar 

  230. Volgers, C., Benedikter, B. J., Grauls, G. E., et al. (2017). Bead-based flow-cytometry for semi-quantitative analysis of complex membrane vesicle populations released by bacteria and host cells. Microbiological Research, 200, 25–32. https://doi.org/10.1016/j.micres.2017.04.003

    Article  CAS  Google Scholar 

  231. Wiklander, O. P. B., Bostancioglu, R. B., Welsh, J. A., et al. (2018). Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Frontiers in Immunology, 9, 1326. https://doi.org/10.3389/fimmu.2018.01326

    Article  CAS  Google Scholar 

  232. Kusuma, G. D., Barabadi, M., Tan, J. L., et al. (2018). To protect and to preserve: Novel preservation strategies for extracellular vesicles. Frontiers in Pharmacology, 9, 1199. https://doi.org/10.3389/fphar.2018.01199

    Article  CAS  Google Scholar 

  233. Wu, J. Y., Li, Y. J., Hu, X. B., et al. (2021). Preservation of small extracellular vesicles for functional analysis and therapeutic applications: A comparative evaluation of storage conditions. Drug Delivery, 28(1), 162–170. https://doi.org/10.1080/10717544.2020.1869866

    Article  CAS  Google Scholar 

  234. Cheng, Y., Zeng, Q., Han, Q., et al. (2019). Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein & Cell, 10(4), 295–299. https://doi.org/10.1007/s13238-018-0529-4

    Article  CAS  Google Scholar 

  235. Park, S. J., Jeon, H., Yoo, S.-M., et al. (2018). The effect of storage temperature on the biological activity of extracellular vesicles for the complement system. In Vitro Cellular & Developmental Biology - Animal, 54(6), 423–429. https://doi.org/10.1007/s11626-018-0261-7

    Article  CAS  Google Scholar 

  236. Meng, W., He, C., Hao, Y., et al. (2020). Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Delivery, 27(1), 585–598. https://doi.org/10.1080/10717544.2020.1748758

    Article  CAS  Google Scholar 

  237. Gaurav, I., Thakur, A., Iyaswamy, A., et al. (2021). Factors affecting extracellular vesicles based drug delivery systems. Molecules. 26(6). https://doi.org/10.3390/molecules26061544

  238. Parfejevs, V., Sagini, K., Buss, A., et al. (2020). Adult stem cell-derived extracellular vesicles in cancer treatment: Opportunities and challenges. Cells, 9(5). https://doi.org/10.3390/cells9051171

  239. Vader, P., Mol, E. A., Pasterkamp, G., et al. (2016). Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 106(Pt A), 148–156. https://doi.org/10.1016/j.addr.2016.02.006

    Article  CAS  Google Scholar 

  240. Ruan, S., Zhou, Y., Jiang, X., et al. (2021). Rethinking CRITID procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Advanced Science (Weinh), 8(9), 2004025. https://doi.org/10.1002/advs.202004025

    Article  CAS  Google Scholar 

  241. Luan, X., Sansanaphongpricha, K., Myers, I., et al. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763. https://doi.org/10.1038/aps.2017.12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81774059), the Tianjin Natural Science Foundation (No. 19JCZDJC37100)

Funding

National Natural Science Foundation of China (No. 81774059); Tianjin Natural Science Foundation (No. 19JCZDJC37100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yuying Guo, Dongsheng Hu and Mingli Li performed the literature search. The first draft of the manuscript was written by Yuying Guo and Dongsheng Hu. Lu Lian, Linna Zhao and Yuying Guo drew the figures. Shixin Xu and Huijing Bao critically revised the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huijing Bao or Shixin Xu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Hu, D., Lian, L. et al. Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain?. Stem Cell Rev and Rep 19, 285–308 (2023). https://doi.org/10.1007/s12015-022-10455-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10455-4

Keywords

Navigation